Endliche Präsentierbarkeit (Banachraum)
Die endliche Präsentierbarkeit ist ein mathematisches Konzept, das in der Untersuchung der Banachräume Anwendung findet. Die Grundidee besteht darin, einen Banachraum über die in ihm enthaltenen endlich-dimensionalen Teilräume zu untersuchen.
Definition
[Bearbeiten | Quelltext bearbeiten]Ein normierter Raum heißt endlich präsentierbar in einem normierten Raum , wenn es zu jedem endlich-dimensionalen Untervektorraum und jedem einen Teilraum und einen linearen Isomorphismus gibt mit .
Dabei berechnen sich die Operatornormen und bezüglich der auf und induzierten Teilraum-Normen.
ist also endlich präsentierbar in , wenn jeder endlich-dimensionale Teilraum von bis auf ein auch in vorkommt. Mit dem Begriff des Banach-Mazur-Abstandes kann man das auch so formulieren, dass man zu jedem endlich-dimensionalen Teilraum endlich-dimensionale Teilräume in mit beliebig kleinem Banach-Mazur-Abstand zu finden kann.
Unterräume von Banachräumen sind in diesen endlich präsentierbar. Die Eigenschaft der endlichen Präsentierbarkeit ist transitiv, das heißt: Ist endlich präsentierbar in und endlich präsentierbar in , so ist endlich präsentierbar in .
Beispiele
[Bearbeiten | Quelltext bearbeiten]- Lp([0,1]) ist endlich präsentierbar im Folgenraum .
- ist nicht endlich präsentierbar in .
- Der Funktionenraum ist endlich präsentierbar in c0 und umgekehrt.
Satz von Dvoretzky
[Bearbeiten | Quelltext bearbeiten]Nach dem Satz von Banach-Mazur ist jeder separable Banachraum isometrisch isomorph zu einem Unterraum von . Daher ist jeder Banachraum endlich präsentierbar in , das heißt ist maximal bezüglich endlicher Präsentierbarkeit. Der Satz von Dvoretzky (nach Aryeh Dvoretzky) sagt aus, dass Hilberträume minimal bezüglich endlicher Präsentierbarkeit sind:
- Satz von Dvoretzky: Jeder Hilbertraum ist in jedem unendlich-dimensionalen Banachraum endlich präsentierbar.
Die Eigenschaft, in jedem unendlich-dimensionalen Banachraum endlich präsentierbar zu sein, charakterisiert die Hilberträume. Ist nämlich in jedem Banachraum endlich präsentierbar, so auch in , und man zeigt leicht, dass in die Parallelogrammgleichung gelten muss; daher ist nach dem Satz von Jordan-von Neumann ebenfalls ein Hilbertraum.
Super-Eigenschaften
[Bearbeiten | Quelltext bearbeiten]Es sei P eine Eigenschaft, die ein Banachraum haben kann. Man sagt, ein Banachraum sei (bzw. habe) super-P, falls jeder Banachraum, der in endlich präsentierbar ist, ebenfalls die Eigenschaft P hat. Wenn ein Banachraum eine Super-Eigenschaft hat, dann muss nach dem Satz von Dvoretzky auch jeder Hilbertraum diese Eigenschaft haben.
Ist ein gleichmäßig konvexer Raum und endlich präsentierbar in , so ist auch gleichmäßig konvex. Gleichmäßige Konvexität ist also eine Super-Eigenschaft, das heißt ein gleichmäßig konvexer Raum ist bereits super-gleichmäßig konvex.
Super-Reflexivität
[Bearbeiten | Quelltext bearbeiten]Da gleichmäßig konvexe Räume nach dem Satz von Milman reflexiv sind und da gleichmäßige Konvexität eine Super-Eigenschaft ist, sind gleichmäßig konvexe Räume super-reflexiv. Reflexivität selbst ist keine Super-Eigenschaft, das heißt Reflexivität und Super-Reflexivität sind nicht äquivalent. Super-Reflexivität wird durch den folgenden Satz von Per Enflo charakterisiert:
- Ein Banachraum ist genau dann super-reflexiv, wenn es eine äquivalente Norm gibt, die ihn zu einem gleichmäßig konvexen Raum macht.
Da gleichmäßig konvexe Räume nach einem Satz von Shizuo Kakutani die Banach-Saks-Eigenschaft haben, folgt daraus:
- Super-reflexive Räume haben die Banach-Saks-Eigenschaft.
Daher folgt aus der Super-Reflexivität die Super-Banach-Saks-Eigenschaft; man kann sogar zeigen:
- Super-Reflexivität und die Super-Banach-Saks-Eigenschaft sind äquivalent.
Prinzip der lokalen Reflexivität
[Bearbeiten | Quelltext bearbeiten]Nach einem Satz von Joram Lindenstrauss und Haskell Rosenthal ist der Bidual eines Banachraums stets endlich präsentierbar in . Dieses sogenannte Prinzip der lokalen Reflexivität wird zur folgenden genaueren Aussage verschärft:
- Sei ein Banachraum, und seien endlich-dimensionale Teilräume und es sei . Dann gibt es einen injektiven, stetigen, linearen Operator mit:
- für alle
Literatur
[Bearbeiten | Quelltext bearbeiten]- Bernard Beauzamy: Introduction to Banach Spaces and their Geometry. 2. Auflage. North-Holland, Amsterdam u. a. 1985, ISBN 0-444-87878-5.
- Joseph Diestel: Sequences and Series in Banach Spaces. Springer, New York u. a. 1984, ISBN 0-387-90859-5.
- Per Enflo: Banach spaces which can be given an equivalent uniformly convex norm. In: Israel Mathematical Journal. Band 13, 1972, S. 281–288.
- Joram Lindenstrauss, Haskell Paul Rosenthal: The Lp-spaces. In: Israel Mathematical Journal. Band 7, 1969, S. 325–349.