Zur Beschreibungsseite auf Commons

Datei:Epicyclic Gearing Stationary Sun.gif

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Epicyclic_Gearing_Stationary_Sun.gif(500 × 500 Pixel, Dateigröße: 2,66 MB, MIME-Typ: image/gif, Endlosschleife, 170 Bilder, 6,8 s)

Diese Datei und die Informationen unter dem roten Trennstrich werden aus dem zentralen Medienarchiv Wikimedia Commons eingebunden.

Zur Beschreibungsseite auf Commons


Beschreibung

Beschreibung
Deutsch: Umlaufrädergetriebe; Zähne: zSonne=24, zPlaneten=16, zHohl=56.
  • Antrieb=Hohlrad; Abtreib=Steg:
  • Antrieb=Steg; Abtreib=Hohlrad:
English: Epicyclic gearing; Teeth: zsun=24, zplanet=16, zring=56.
Datum
Quelle Eigenes Werk
Urheber Jahobr
Andere Versionen
GIF‑Erstellung
InfoField
 
Dieses Diagramm wurde von Jahobr mit MATLAB erstellt.
Quelltext
InfoField

MATLAB code

function Epicyclic_Gearing()
% Source code for drawing epicyclic gearing.
% The shape of the gears is not precise, it creates a decent GIF and a SVG.
%
% 2017-01-22 Jahobr

teethSun  = 24; % if divisible by 4 plotting is easier
teethPlan = 16; % if divisible by 4 plotting is easier
teethRing = teethSun+teethPlan*2;

modul = 16;

carrierCol = round([0.1  0.7  0.1].*255)./255; % green
sunCol     = round([0.95 0.65 0  ].*255)./255; % yellow (obviously)
palnetCol  = round([0.2  0.2  1  ].*255)./255; % blue   (obviously)
ringCol    = round([1    0.2  0.2].*255)./255; % red

diameterSun  = modul.*teethSun;
diameterPlan = modul.*teethPlan;
diameterCarr = diameterSun+diameterPlan;
diameterRing = diameterSun+diameterPlan+diameterPlan;

nPlan = 4; % number of planets

xySize = 500; % size in pixel
scaleReduction = 2; % the size reduction: adds antialiasing

[pathstr,fname] = fileparts(which(mfilename)); % save files under the same name and at file location

figHandle = figure(15674455); clf
set(figHandle,'Units','pixel');
set(figHandle,'ToolBar','none');
set(figHandle,'GraphicsSmoothing','on') % requires at least version 2014b
set(figHandle,'position',[1 1 [xySize xySize]*scaleReduction]); % big start image for antialiasing later [x y width height]
axesHandle = axes;
hold(axesHandle,'on')
set(axesHandle,'position',[-0.05 -0.05 1.1 1.1]); % stretch axis bigger as figure, easy way to get rid of ticks [x y width height]
xlim([-diameterRing*0.72 diameterRing*0.72]);
ylim([-diameterRing*0.72 diameterRing*0.72]);
axis equal; drawnow;

for currentCase = 1:4;
    switch currentCase
        case 1 % Stationary_Sun
            nFrames = 170;
            reducedRGBimage = uint8(ones(xySize,xySize,3,nFrames)); % allocate
            angleCarrier = -linspace(0,pi*2/nPlan,nFrames+1); % define gear position in frames
            angleCarrier = angleCarrier(1:end-1); % remove last frame, it would be double

            anglePlan = angleCarrier.*( teethSun/teethPlan+1 ); % gear ratio
            anglePlan = anglePlan + (pi/teethPlan); % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT

            angleRing = angleCarrier.*  (teethSun+teethRing) / teethRing; % gear ratio
            angleRing = angleRing + 0; % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT

            angleSun = zeros(size(anglePlan));

            saveName = [fname '_Stationary_Sun'];

        case 2 % Stationary_Ring
            nFrames = 170;
            reducedRGBimage = uint8(ones(xySize,xySize,3,nFrames)); % allocate
            angleCarrier = -linspace(0,pi*2/nPlan,nFrames+1); % define gear position in frames
            angleCarrier = angleCarrier(1:end-1); % remove last frame, it would be double

            anglePlan = angleCarrier.*( teethSun/teethPlan+1 ); % gear ratio
            anglePlan = -anglePlan + (pi/teethPlan); % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT

            angleSun = angleCarrier.*  (1+teethRing/teethSun); % gear ratio
            angleSun = angleSun + 0; % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT

            angleRing = zeros(size(anglePlan));

            saveName = [fname '_Stationary_Ring'];

        case 3 % Stationary_Carrier
            nFrames = 20;
            reducedRGBimage = uint8(ones(xySize,xySize,3,nFrames)); % allocate
            angleSun = -linspace(0,pi*2/teethSun,nFrames+1); % define gear position in frames

            angleRing = -angleSun.*  (teethSun/teethRing); % gear ratio
            angleRing =  angleRing + 0; % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT

            anglePlan =  angleSun.* (teethSun/teethPlan ); % gear ratio
            anglePlan = -anglePlan + (pi/teethPlan); % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT

            angleCarrier = zeros(size(anglePlan));

            saveName = [fname '_Stationary_Carrier'];

        case 4 % Direct_Drive
            nFrames = 170;
            reducedRGBimage = uint8(ones(xySize,xySize,3,nFrames)); % allocate
            angleAll = -linspace(0,pi*2/nPlan,nFrames+1); % define gear position in frames
            angleAll = angleAll(1:end-1); % remove last frame, it would be double
            
            angleCarrier = angleAll;
            angleCarrier = angleCarrier + 0; % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT

            anglePlan = angleAll;
            anglePlan = anglePlan + (pi/teethPlan); % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT

            angleRing = angleAll;
            angleRing = angleRing + 0; % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT

            angleSun = angleAll;

            saveName = [fname '_Direct_Drive'];
    end

    for iFrame = 1:nFrames

        cla(axesHandle) % fresh frame

        %% ring
        drawRingGear(axesHandle,teethRing,modul,ringCol,angleRing(iFrame))

        %% sun
        drawCogWheel(axesHandle,[0 0],teethSun ,modul,sunCol,angleSun(iFrame));

        %% planets
        angPlan = linspace(0,2*pi,nPlan+1);
        angPlan = angPlan(1:end-1);
        for iPlan = angPlan
            [X,Y] = pol2cart(iPlan+angleCarrier(iFrame) ,diameterCarr/2);
            drawCogWheel(axesHandle,[X,Y],teethPlan,modul,palnetCol,anglePlan(iFrame)); % planetary gear
        end

        %% carrier
        angCarr= linspace(0,2*pi,nPlan*2+1);
        [X,Y] = pol2cart([angCarr  fliplr(angCarr)]+angleCarrier(iFrame) ,[ones(size(angCarr))*diameterCarr/2.05 ones(size(angCarr))* diameterCarr/1.75]);
        patch(X,Y,carrierCol,'EdgeColor',[0 0 0],'LineWidth',1.5) % full outer disc

        for iPlan = angPlan
            [X,Y] = pol2cart(iPlan+angleCarrier(iFrame) ,diameterCarr/2);
            circlePatch(X,Y,diameterPlan*0.25,carrierCol,1.5);
            circlePatch(X,Y,diameterPlan*0.15,palnetCol,1.5);
        end
        
        %% save animation
        f = getframe(figHandle);
        reducedRGBimage(:,:,:,iFrame) = imReduceSize(f.cdata,scaleReduction); % the size reduction: adds antialiasing
        
        if iFrame == 1 % SVG
            if ~isempty(which('plot2svg'))
                plot2svg(fullfile(pathstr, [fname '_Stationary.svg']),figHandle) % by Juerg Schwizer
            else
                disp('plot2svg.m not available; see http://www.zhinst.com/blogs/schwizer/');
            end
        end
        
    end

    map = createImMap(reducedRGBimage,16,[0 0 0;1 1 1;carrierCol;sunCol;palnetCol;ringCol]); % colormap
    
    im = uint8(ones(xySize,xySize,1,nFrames)); % allocate
    for iFrame = 1:nFrames
        im(:,:,1,iFrame) = rgb2ind(reducedRGBimage(:,:,:,iFrame),map,'nodither');
    end
    
    imwrite(im,map,fullfile(pathstr, [saveName '.gif']),'DelayTime',1/25,'LoopCount',inf) % save gif
    disp([saveName '.gif  has ' num2str(numel(im)/10^6 ,4) ' Megapixels']) % Category:Animated GIF files exceeding the 50 MP limit
end


function drawCogWheel(axesHandle,center,toothNumber,modul,colFilling,startOffset)
% DRAWTOOTHEDWHEEL - draw a simple Toothed Wheel
%
%  Input:
%    axesHandle:
%    center:       [x y]
%    toothNumber:  scalar
%    modul:        scalar tooth "size"
%    colFilling:   color of filling [r g b]
%    startOffset:  start rotation (scalar)[rad]

effectiveRadius = modul*toothNumber/2; % effective effectiveRadius

outsideRadius =     effectiveRadius+1*  modul; %                +---+             +---+
upperRisingRadius = effectiveRadius+0.5*modul; %               /     \           /     \
% effective Radius                             %              /       \         /       \
lowerRisingRadius = effectiveRadius-0.5*modul; %             I         I       I         I
rootRadius =        effectiveRadius-1.1*modul; %     + - - - +         + - - - +         +

angleBetweenTeeth = 2*pi/toothNumber; % angle between 2 teeth
angleOffPoints = (0:angleBetweenTeeth/16:(2*pi));
angleOffPoints = angleOffPoints+startOffset; % apply rotation offset

angleOffPoints( 7:16:end) = angleOffPoints( 7:16:end) + 1/toothNumber^1.2; % hack to create smaller tooth tip
angleOffPoints(11:16:end) = angleOffPoints(11:16:end) - 1/toothNumber^1.2; % hack to create smaller tooth tip

angleOffPoints( 8:16:end) = (angleOffPoints( 7:16:end) + angleOffPoints(9:16:end))/2; % shift the neighbouring tip point in accordingly
angleOffPoints(10:16:end) = (angleOffPoints(11:16:end) + angleOffPoints(9:16:end))/2; % shift the neighbouring tip point in accordingly

angleOffPoints( 6:16:end) = angleOffPoints( 6:16:end) + 1/toothNumber^1.7; % hack to create slender tooth
angleOffPoints(12:16:end) = angleOffPoints(12:16:end) - 1/toothNumber^1.7; % hack to create slender tooth

radiusOffPoints = angleOffPoints; % allocate with correct site

radiusOffPoints(1:16:end)  = rootRadius;        % center bottom         I
radiusOffPoints(2:16:end)  = rootRadius;        % left bottom           I
radiusOffPoints(3:16:end)  = rootRadius;        % left bottom corner    +
radiusOffPoints(4:16:end)  = lowerRisingRadius; % lower rising bottom      \
radiusOffPoints(5:16:end)  = effectiveRadius;   % rising edge                 \
radiusOffPoints(6:16:end)  = upperRisingRadius; % upper rising edge              \
radiusOffPoints(7:16:end)  = outsideRadius;     % right top corner                 +
radiusOffPoints(8:16:end)  = outsideRadius;     % right top                        I
radiusOffPoints(9:16:end)  = outsideRadius;     % center top                       I
radiusOffPoints(10:16:end) = outsideRadius;     % left top                         I
radiusOffPoints(11:16:end) = outsideRadius;     % left top corner                  +
radiusOffPoints(12:16:end) = upperRisingRadius; % upper falling edge             /
radiusOffPoints(13:16:end) = effectiveRadius;   % falling edge                /
radiusOffPoints(14:16:end) = lowerRisingRadius; % lower falling edge       /
radiusOffPoints(15:16:end) = rootRadius;        % right bottom corner   +
radiusOffPoints(16:16:end) = rootRadius;        % right bottom          I

[X,Y] = pol2cart(angleOffPoints,radiusOffPoints);
X = X+center(1); % center offset
Y = Y+center(2); % center offset
patch(X,Y,colFilling,'EdgeColor',[0 0 0],'LineWidth',1.5)
% plot(axesHandle,X,Y,'-x','linewidth',2,'color',[0 0 0]);

% %% effective Radius
% [X,Y] = pol2cart(angleOffPoints,effectiveRadius);
% X = X+center(1); % center offset
% Y = Y+center(2); % center offset
% plot(axesHandle,X,Y,'-.','color',[0 0 0]);


function drawRingGear(axesHandle,toothNumber,modul,colFilling,startOffset)
% subfunction for the outer static gear
effectiveRadius = modul*toothNumber/2; % effective effectiveRadius

outsideRadius =     effectiveRadius-1*  modul; %                +---+             +---+
upperRisingRadius = effectiveRadius-0.5*modul; %               /     \           /     \
% effective Radius                             %              /       \         /       \
lowerRisingRadius = effectiveRadius+0.5*modul; %             I         I       I         I
rootRadius =        effectiveRadius+1.1*modul; %     + - - - +         + - - - +         +

angleBetweenTeeth = 2*pi/toothNumber; % angle between 2 teeth
angleOffPoints = (0:angleBetweenTeeth/16:(2*pi));
angleOffPoints = angleOffPoints+startOffset; % apply rotation offset

%% outerEdge
maxRadius = rootRadius*1.2; % definition of outer line
[X,Y] = pol2cart(angleOffPoints,maxRadius);

patch(X,Y,colFilling,'EdgeColor',[0 0 0],'LineWidth',1.5) % full outer disc
% plot(axesHandle,X,Y,'linewidth',2,'color',[0 0 0]); % draw outer circle

%% inner teeth
radiusOffPoints = angleOffPoints; % init

angleOffPoints(7:16:end) =  angleOffPoints(7:16:end)  + 1/toothNumber^1.2; % hack to create smaller tooth tip
angleOffPoints(11:16:end) = angleOffPoints(11:16:end) - 1/toothNumber^1.2; % hack to create smaller tooth tip

angleOffPoints(8:16:end)  = (angleOffPoints(7:16:end) +  angleOffPoints(9:16:end))/2; % shift the neighbouring tip point in accordingly
angleOffPoints(10:16:end) = (angleOffPoints(11:16:end) + angleOffPoints(9:16:end))/2; % shift the neighbouring tip point in accordingly

angleOffPoints(6:16:end) =  angleOffPoints(6:16:end)  + 1/toothNumber^1.7; % hack to create slender tooth
angleOffPoints(12:16:end) = angleOffPoints(12:16:end) - 1/toothNumber^1.7; % hack to create slender tooth

radiusOffPoints(1:16:end)  = rootRadius;        % center bottom         I
radiusOffPoints(2:16:end)  = rootRadius;        % left bottom           I
radiusOffPoints(3:16:end)  = rootRadius;        % left bottom corner    +
radiusOffPoints(4:16:end)  = lowerRisingRadius; % lower rising bottom      \
radiusOffPoints(5:16:end)  = effectiveRadius;   % rising edge                 \
radiusOffPoints(6:16:end)  = upperRisingRadius; % upper rising edge              \
radiusOffPoints(7:16:end)  = outsideRadius;     % right top corner                 +
radiusOffPoints(8:16:end)  = outsideRadius;     % right top                        I
radiusOffPoints(9:16:end)  = outsideRadius;     % center top                       I
radiusOffPoints(10:16:end) = outsideRadius;     % left top                         I
radiusOffPoints(11:16:end) = outsideRadius;     % left top corner                  +
radiusOffPoints(12:16:end) = upperRisingRadius; % upper falling edge             /
radiusOffPoints(13:16:end) = effectiveRadius;   % falling edge                /
radiusOffPoints(14:16:end) = lowerRisingRadius; % lower falling edge       /
radiusOffPoints(15:16:end) = rootRadius;        % right bottom corner   +
radiusOffPoints(16:16:end) = rootRadius;        % right bottom          I

[X,Y] = pol2cart(angleOffPoints,radiusOffPoints);

patch(X,Y,[1 1 1],'EdgeColor',[0 0 0],'LineWidth',1.5) % overlay white area for inner teeth
% plot(axesHandle,X,Y,'-','linewidth',2,'color',[0 0 0]); % teeth line


function circlePatch(x,y,r,col,linW)
% x coordinates of the center
% y coordinates of the center
% r is the radius of the circle
% col patch color
% linW LineWidth
angleOffPoints = linspace(0,2.001*pi,200);
xc = x + r*cos(angleOffPoints);
yc = y + r*sin(angleOffPoints);
patch(xc,yc,col,'EdgeColor',[0 0 0],'LineWidth',linW);


function im = imReduceSize(im,redSize)
% Input:
%  im:      image, [imRows x imColumns x nChannel x nStack] (unit8)
%                      imRows, imColumns: must be divisible by redSize
%                      nChannel: usually 3 (RGB) or 1 (grey)
%                      nStack:   number of stacked images
%                                usually 1; >1 for animations
%  redSize: 2 = half the size (quarter of pixels)
%           3 = third the size (ninth of pixels)
%           ... and so on
% Output:
%  imNew:  unit8([imRows/redSize x imColumns/redSize x nChannel x nStack])
%
% an alternative is : imNew = imresize(im,1/reduceImage,'bilinear');
%        BUT 'bicubic' & 'bilinear'  produces fuzzy lines
%        IMHO this function produces nicer results as "imresize"
 
[nRow,nCol,nChannel,nStack] = size(im);

if redSize==1;  return;  end % nothing to do
if redSize~=round(abs(redSize));             error('"redSize" must be a positive integer');  end
if rem(nRow,redSize)~=0;     error('number of pixel-rows must be a multiple of "redSize"');  end
if rem(nCol,redSize)~=0;  error('number of pixel-columns must be a multiple of "redSize"');  end

nRowNew = nRow/redSize;
nColNew = nCol/redSize;

im = double(im).^2; % brightness rescaling from "linear to the human eye" to the "physics domain"; see youtube: /watch?v=LKnqECcg6Gw
im = reshape(im, nRow, redSize, nColNew*nChannel*nStack); % packets of width redSize, as columns next to each other
im = sum(im,2); % sum in all rows. Size of result: [nRow, 1, nColNew*nChannel]
im = permute(im, [3,1,2,4]); % move singleton-dimension-2 to dimension-3; transpose image. Size of result: [nColNew*nChannel, nRow, 1]
im = reshape(im, nColNew*nChannel*nStack, redSize, nRowNew); % packets of width redSize, as columns next to each other
im = sum(im,2); % sum in all rows. Size of result: [nColNew*nChannel, 1, nRowNew]
im = permute(im, [3,1,2,4]); % move singleton-dimension-2 to dimension-3; transpose image back. Size of result: [nRowNew, nColNew*nChannel, 1]
im = reshape(im, nRowNew, nColNew, nChannel, nStack); % putting all channels (rgb) back behind each other in the third dimension
im = uint8(sqrt(im./redSize^2)); % mean; re-normalize brightness: "scale linear to the human eye"; back in uint8


function map = createImMap(imRGB,nCol,startMap)
% createImMap creates a color-map including predefined colors.
% "rgb2ind" creates a map but there is no option to predefine some colors,
%         and it does not handle stacked images.
% Input:
%   imRGB:     image, [imRows x imColumns x 3(RGB) x nStack] (unit8)
%   nCol:      total number of colors the map should have, [integer]
%   startMap:  predefined colors; colormap format, [p x 3] (double)

imRGB = permute(imRGB,[1 2 4 3]); % step1; make unified column-image (handling possible nStack)
imRGBcolumn = reshape(imRGB,[],1,3,1); % step2; make unified column-image

fullMap = double(permute(imRGBcolumn,[1 3 2]))./255; % "column image" to color map 
[fullMap,~,imMapColumn] = unique(fullMap,'rows'); % find all unique colores; create indexed colormap-image
% "cmunique" could be used but is buggy and inconvenient because the output changes between "uint8" and "double"

nColFul = size(fullMap,1);
nColStart = size(startMap,1);
disp(['Number of colors: ' num2str(nColFul) ' (including ' num2str(nColStart) ' self defined)']);

if nCol<=nColStart;  error('Not enough colors');        end
if nCol>nColFul;   warning('More colors than needed');  end

isPreDefCol = false(size(imMapColumn)); % init
 
for iCol = 1:nColStart
    diff = sum(abs(fullMap-repmat(startMap(iCol,:),nColFul,1)),2); % difference between a predefined and all colores
    [mDiff,index] = min(diff); % find matching (or most similar) color
    if mDiff>0.05 % color handling is not precise
        warning(['Predefined color ' num2str(iCol) ' does not appear in image'])
        continue
    end
    isThisPreDefCol = imMapColumn==index; % find all pixel with predefined color
    disp([num2str(sum(isThisPreDefCol(:))) ' pixel have predefined color ' num2str(iCol)]);
    isPreDefCol = or(isPreDefCol,isThisPreDefCol); % combine with overall list
end
[~,mapAdditional] = rgb2ind(imRGBcolumn(~isPreDefCol,:,:),nCol-nColStart,'nodither'); % create map of remaining colors
map = [startMap;mapAdditional];

Lizenz

Ich, der Urheber dieses Werkes, veröffentliche es unter der folgenden Lizenz:
Creative Commons CC-Zero Diese Datei wird unter der Creative-Commons-Lizenz „CC0 1.0 Verzicht auf das Copyright“ zur Verfügung gestellt.
Die Person, die das Werk mit diesem Dokument verbunden hat, übergibt dieses weltweit der Gemeinfreiheit, indem sie alle Urheberrechte und damit verbundenen weiteren Rechte – im Rahmen der jeweils geltenden gesetzlichen Bestimmungen – aufgibt. Das Werk kann – selbst für kommerzielle Zwecke – kopiert, modifiziert und weiterverteilt werden, ohne hierfür um Erlaubnis bitten zu müssen.

Kurzbeschreibungen

Ergänze eine einzeilige Erklärung, was diese Datei darstellt.

In dieser Datei abgebildete Objekte

Motiv

image/gif

Dateiversionen

Klicke auf einen Zeitpunkt, um diese Version zu laden.

Version vomVorschaubildMaßeBenutzerKommentar
aktuell00:34, 30. Okt. 2017Vorschaubild der Version vom 00:34, 30. Okt. 2017500 × 500 (2,66 MB)Jahobrgraph smoothing
15:39, 9. Dez. 2016Vorschaubild der Version vom 15:39, 9. Dez. 2016500 × 500 (2,33 MB)Jahobrmatch file name
15:24, 9. Dez. 2016Vorschaubild der Version vom 15:24, 9. Dez. 2016500 × 500 (2,33 MB)JahobrUser created page with UploadWizard

Die folgende Seite verwendet diese Datei:

Globale Dateiverwendung

Die nachfolgenden anderen Wikis verwenden diese Datei: