Hypergeometrische Verteilung

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Ziehen ohne Zurücklegen)
Zur Navigation springen Zur Suche springen
Wahrscheinlichkeitsfunktion der hypergeometrischen Verteilung für .Rot: ;Blau: ; Grün: .

Die hypergeometrische Verteilung ist eine Wahrscheinlichkeitsverteilung in der Stochastik. Sie ist univariat und zählt zu den diskreten Wahrscheinlichkeitsverteilungen. In Abgrenzung zur allgemeinen hypergeometrischen Verteilung wird sie auch klassische hypergeometrische Verteilung genannt.[1]

Einer dichotomen Grundgesamtheit werden in einer Stichprobe zufällig Elemente ohne Zurücklegen entnommen. Die hypergeometrische Verteilung gibt dann Auskunft darüber, mit welcher Wahrscheinlichkeit in der Stichprobe eine bestimmte Anzahl von Elementen vorkommt, die die gewünschte Eigenschaft haben. Bedeutung kommt dieser Verteilung daher etwa bei Qualitätskontrollen zu.

Die hypergeometrische Verteilung wird modellhaft dem Urnenmodell ohne Zurücklegen zugeordnet (siehe auch Kombination ohne Wiederholung). Man betrachtet speziell in diesem Zusammenhang eine Urne mit zwei Sorten Kugeln. Es werden Kugeln ohne Zurücklegen entnommen. Die Zufallsvariable ist die Zahl der Kugeln der ersten Sorte in dieser Stichprobe.

Die hypergeometrische Verteilung beschreibt also die Wahrscheinlichkeit dafür, dass bei gegebenen Elementen („Grundgesamtheit des Umfangs “), von denen die gewünschte Eigenschaft besitzen, beim Herausgreifen von Probestücken („Stichprobe des Umfangs “) genau Treffer erzielt werden, d. h. die Wahrscheinlichkeit für Erfolge in Versuchen.

Beispiel 1: In einer Urne befinden sich Kugeln, davon sind blau, also sind nicht blau. Wie hoch ist die Wahrscheinlichkeit , bei einer Stichprobe von zwanzig Kugeln genau dreizehn blaue Kugeln zu ziehen (ohne Zurücklegen)? Antwort: . Dies entspricht dem blauen Balken bei im Diagramm "Wahrscheinlichkeitsfunktion der hypergeometrischen Verteilung für ".

Beispiel 2: In einer Urne befinden sich Kugeln, davon sind gelb. Wie hoch ist die Wahrscheinlichkeit , bei einer Stichprobe von zehn Kugeln genau vier gelbe Kugeln zu ziehen? Antwort: . Das Beispiel wird unten durchgerechnet.

Die hypergeometrische Verteilung ist abhängig von drei Parametern:

  • der Anzahl der Elemente einer Grundgesamtheit.
  • der Anzahl der Elemente mit einer bestimmten Eigenschaft in dieser Grundmenge (die Anzahl möglicher Erfolge).
  • der Anzahl der Elemente in einer Stichprobe.

Die Verteilung gibt nun Auskunft darüber, wie wahrscheinlich es ist, dass sich Elemente mit der zu prüfenden Eigenschaft (Erfolge bzw. Treffer) in der Stichprobe befinden. Der Ergebnisraum ist daher .

Eine diskrete Zufallsgröße unterliegt der hypergeometrischen Verteilung mit den Parametern , und , wenn sie die Wahrscheinlichkeiten

für besitzt. Dabei bezeichnet den Binomialkoeffizienten über “. Man schreibt dann oder .

Die Verteilungsfunktion gibt dann die Wahrscheinlichkeit an, dass höchstens Elemente mit der zu prüfenden Eigenschaft in der Stichprobe sind. Diese kumulierte Wahrscheinlichkeit ist die Summe

.

Alternative Parametrisierung

[Bearbeiten | Quelltext bearbeiten]

Gelegentlich wird auch als Wahrscheinlichkeitsfunktion

verwendet. Diese geht mit und in die obige Variante über.

Eigenschaften der hypergeometrischen Verteilung

[Bearbeiten | Quelltext bearbeiten]

Es gelten folgende Symmetrien:

  • Vertauschung von gezogenen Kugeln und Erfolgen:
  • Vertauschung von Erfolgen und Misserfolgen:

Der Erwartungswert der hypergeometrisch verteilten Zufallsvariable ist

.

Der Modus der hypergeometrischen Verteilung ist

.

Dabei ist die Gaußklammer.

Die Varianz der hypergeometrisch verteilten Zufallsvariable ist

,

wobei der letzte Bruch der so genannte Korrekturfaktor (Endlichkeitskorrektur) beim Modell ohne Zurücklegen ist.

Die Schiefe der hypergeometrischen Verteilung ist

.

Charakteristische Funktion

[Bearbeiten | Quelltext bearbeiten]

Die charakteristische Funktion hat die folgende Form:

Wobei die gaußsche hypergeometrische Funktion bezeichnet.

Momenterzeugende Funktion

[Bearbeiten | Quelltext bearbeiten]

Auch die momenterzeugende Funktion lässt sich mittels der hypergeometrischen Funktion ausdrücken:

Wahrscheinlichkeitserzeugende Funktion

[Bearbeiten | Quelltext bearbeiten]

Die wahrscheinlichkeitserzeugende Funktion ist gegeben als

Beziehung zu anderen Verteilungen

[Bearbeiten | Quelltext bearbeiten]

Beziehung zur Binomialverteilung

[Bearbeiten | Quelltext bearbeiten]

Im Gegensatz zur Binomialverteilung werden bei der hypergeometrischen Verteilung die Stichproben nicht wieder in das Reservoir zur erneuten Auswahl zurückgelegt. Ist der Umfang der Stichprobe im Vergleich zum Umfang der Grundgesamtheit relativ klein (etwa ), unterscheiden sich die durch die Binomialverteilung bzw. die hypergeometrische Verteilung berechneten Wahrscheinlichkeiten nicht wesentlich voneinander. In diesen Fällen wird dann oft die Approximation durch die mathematisch einfacher zu handhabende Binomialverteilung vorgenommen.

Beziehung zur Pólya-Verteilung

[Bearbeiten | Quelltext bearbeiten]

Die hypergeometrische Verteilung ist ein Spezialfall der Pólya-Verteilung (wähle ).

Beziehung zum Urnenmodell

[Bearbeiten | Quelltext bearbeiten]

Die hypergeometrische Verteilung entsteht aus der diskreten Gleichverteilung durch das Urnenmodell. Aus einer Urne mit insgesamt Kugeln sind eingefärbt und es werden Kugeln gezogen. Die hypergeometrische Verteilung gibt für die Wahrscheinlichkeit an, dass gefärbte Kugeln gezogen werden. Andernfalls kann auch mit der Binomialverteilung in der Praxis modelliert werden. Siehe hierzu auch das Beispiel.

Beziehung zur multivariaten hypergeometrischen Verteilung

[Bearbeiten | Quelltext bearbeiten]

Die multivariate hypergeometrische Verteilung ist eine Verallgemeinerung der hypergeometrischen Verteilung. Sie beantwortet die Frage nach der Anzahl der gezogenen Kugeln einer Farbe aus einer Urne, wenn diese mehr als zwei unterscheidbare Farben von Kugeln enthält. Für zwei Farben stimmt sie mit der hypergeometrischen Verteilung überein.

Ein Beispiel für die praktische Anwendung der hypergeometrischen Verteilung ist das Lotto: Beim Zahlenlotto gibt es 49 nummerierte Kugeln; davon werden bei der Auslosung 6 gezogen. Auf dem Lottoschein werden 6 Zahlen angekreuzt.

gibt die Wahrscheinlichkeit dafür an, genau Richtige zu erzielen.

Texas Hold’em

[Bearbeiten | Quelltext bearbeiten]

Bei der Pokervariante Texas Hold’em werden von den 52 Spielkarten fünf Community Cards aufgedeckt. Wenn die diskrete Zufallsvariable die Anzahl der Asse zählt, die aufgedeckt werden, ergibt sich für die hypergeometrische Verteilung mit Spielkarten, Assen und Community Cards.

Gesucht ist die Wahrscheinlichkeit, dass von den fünf Community Cards genau zwei Asse sind.

Gesamtanzahl der Spielkarten
Anzahl der Asse
Umfang der Stichprobe
Anzahl der Treffer (Asse)

Also .

Diese Wahrscheinlichkeit ergibt sich aus:

Anzahl der Möglichkeiten, genau zwei Asse auszuwählen
geteilt durch
Anzahl der Möglichkeiten, genau fünf von 52 Spielkarten auszuwählen

Es gibt

Möglichkeiten, genau zwei der vier Asse auszuwählen.

Es gibt

Möglichkeiten, genau drei der 48 anderen Spielkarten auszuwählen.

Da jedes Ass mit jeder anderen Spielkarte kombiniert werden kann, ergeben sich

Möglichkeiten für genau zwei Asse und drei andere Spielkarten.

Es gibt insgesamt

Möglichkeiten, fünf von 52 Spielkarten aufzudecken.

Wir erhalten also die Wahrscheinlichkeit

,

das heißt, in etwa vier Prozent der Fälle werden genau zwei Asse aufgedeckt.

Die Werte und die Wahrscheinlichkeiten für die hypergeometrische Verteilung lassen sich in folgender Tabelle zusammenfassen:

Der Erwartungswert beträgt

.

Die Varianz ist demnach gegeben durch

Für die Standardabweichung ergibt sich damit:

.

Ausführliches Rechenbeispiel mit Kugeln

[Bearbeiten | Quelltext bearbeiten]

In einem Behälter befinden sich 45 Kugeln, von denen 20 gelb sind. Es werden zehn Kugeln ohne Zurücklegen entnommen.

Die hypergeometrische Verteilung gibt die Wahrscheinlichkeit dafür an, dass genau x = 0, 1, 2, 3, …, 10 der entnommenen Kugeln gelb sind.

farbige Kugeln

Zu dem oben aufgeführten Beispiel der farbigen Kugeln soll die Wahrscheinlichkeit ermittelt werden, dass genau 4 gelbe Kugeln resultieren.

Gesamtanzahl der Kugeln
Anzahl mit der Eigenschaft gelb
Umfang der Stichprobe
Anzahl der Treffer (gelb)

Also .

Die Wahrscheinlichkeit ergibt sich aus:

Anzahl der Möglichkeiten, genau 4 gelbe (und damit genau 6 violette) Kugeln auszuwählen
geteilt durch
Anzahl der Möglichkeiten, genau 10 von 45 Kugeln beliebiger Farbe auszuwählen

Es gibt

Möglichkeiten, genau 4 gelbe Kugeln auszuwählen.

Es gibt

Möglichkeiten, genau 6 violette Kugeln auszuwählen.

Da jede gelbe Kugel mit jeder violetten Kugel kombiniert werden kann, ergeben sich

Möglichkeiten für genau 4 gelbe und 6 violette Kugeln.

Es gibt insgesamt

Möglichkeiten, 10 Kugeln zu ziehen.

Wir erhalten also die Wahrscheinlichkeit

,

das heißt, in rund 27 Prozent der Fälle werden genau 4 gelbe (und 6 violette) Kugeln entnommen.

Alternativ kann das Ergebnis auch mit folgender Gleichung gefunden werden

Es befinden sich in der Stichprobe von 10 Kugeln nämlich 4 gelbe Kugeln. Die restlichen 16 gelben Kugeln befinden sich unter den 35 übriggebliebenen Kugeln, die nicht zur Stichprobe gehören.

Zahlenwerte zu den Beispielen

[Bearbeiten | Quelltext bearbeiten]
h(x|45;20;10)
x Anzahl möglicher
Ergebnisse
Wahrscheinlichkeit
in %
0 3.268.760 0,1024
1 40.859.500 1,2807
2 205.499.250 6,4416
3 547.998.000 17,1776
4 858.049.500 26,8965
5 823.727.520 25,8207
6 490.314.000 15,3694
7 178.296.000 5,5889
8 37.791.000 1,1846
9 4.199.000 0,1316
10 184.756 0,0058
3.190.187.286 100,0000
Erwartungswert 4,4444
Varianz 1,9641
h(x|45;10;20)
x Anzahl möglicher
Ergebnisse
Wahrscheinlichkeit
in %
0 3.247.943.160 0,1024
1 40.599.289.500 1,2808
2 204.190.544.250 6,4416
3 544.508.118.000 17,1776
4 852.585.079.500 26,8965
5 818.481.676.320 25,8207
6 487.191.474.000 15,3694
7 177.160.536.000 5,5889
8 37.550.331.000 1,1846
9 4.172.259.000 0,1316
10 183.579.396 0,0058
11 … 20 0 0
3.169.870.830.126 100,0000
Erwartungswert 4,4444
Varianz 1,9641
h(x|49;6;6)
x Anzahl möglicher
Ergebnisse
Wahrscheinlichkeit
in %
0 6.096.454 43,5965
1 5.775.588 41,3019
2 1.851.150 13,2378
3 246.820 1,765
4 13.545 0,0969
5 258 0,0018
6 1 0,0000072
13.983.816 100,0000
Erwartungswert 0,7347
Varianz 0,5776
Wikibooks: Hypergeometrische Verteilung – Lern- und Lehrmaterialien

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Hans-Otto Georgii: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage. Walter de Gruyter, Berlin 2009, ISBN 978-3-11-021526-7, S. 36, doi:10.1515/9783110215274.