Minimallösung

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Minimallösung (englisch minimal solution) ist ein mathematischer Begriff, der sowohl in der Approximationstheorie als auch in der Optimierungstheorie sowie in zugehörigen Teilgebieten der Mathematik, wie der Funktionalanalysis, der numerischen Mathematik oder der Variationsrechnung, eine bedeutende Rolle spielt.[1][2][3][4][5]

Den Terminus einer Minimallösung findet man in der Mathematik – wenngleich in einem anderen Sinne verstanden – auch in der Zahlentheorie im Zusammenhang mit der pellschen Gleichung sowie in der Theorie der Differentialungleichungen im Sinne einer Lösung gewisser Anfangswertprobleme.[6]

Definition[Bearbeiten | Quelltext bearbeiten]

Den Begriff verwendet man in einem weiteren und einem engeren Sinne.

Der Begriff im weiteren Sinne[Bearbeiten | Quelltext bearbeiten]

Gegeben seien eine beliebige Menge , eine Teilmenge sowie eine numerische Funktion . Dann gibt es folgende Begriffsfestlegungen:[7]

  • Als Minimalwert von auf bezeichnet man das Infimum , wobei im Falle dieses Infimum gesetzt wird.
  • Unter der Menge der Minimallösungen von auf versteht man die Teilmenge derjenigen Elemente von , welche den Minimalwert von auf annehmen, also die Teilmenge . Jedes dieser Elemente nennt man eine Minimallösung von auf .
  • Ist ein topologischer Raum und dabei , so heißt eine lokale Minimallösung von auf , falls eine (offene) Umgebung von in derart existiert, dass eine Minimallösung von auf ist. Dieser Begriff ist vor allem wichtig für den Fall, dass ein metrischer oder ein normierter Raum ist.
  • Unter einem Maximalwert von auf , einer Maximallösung von auf und einer lokalen Maximallösung von auf versteht man die durch Dualisierung entstehenden Begriffe, wenn man die Ordnungsrelation von nach umkehrt.[7]

Der Begriff im engeren Sinne[Bearbeiten | Quelltext bearbeiten]

Gegeben seien ein normierter Raum (über dem Körper der reellen oder dem Körper der komplexen Zahlen), der mit einer Norm versehen sein soll, sowie ein fester Raumpunkt und weiter eine Teilmenge .

  • Hier betrachtet man, in Bezug auf die dadurch gegebene Abstandsfunktion , die zu gehörige Funktion und wendet die oben im weiteren Sinne festgelegten Begriffsbildungen an. Ist dann eine Minimallösung von auf vorhanden, so hat man – bezüglich und ! – einen Punkt kürzesten Abstands, also einen solchen Raumpunkt , der dieses Abstandsinfimum annimmt und damit die Gleichung erfüllt.
  • Man nennt dieses – insbesondere in Approximationstheorie – eine Minimallösung für bezüglich ,[8] (wobei man hier den Zusammenhang mit der Abstandsfunktion als gegeben unterstellt).
  • Statt von einer Minimallösung (im engeren Sinne) spricht man hier nicht selten auch von einer besten Approximation (beziehungsweise besten Näherung) von bezüglich [9][10][11] oder von einem Proximum zu in [12] oder auch von einer Bestapproximation an / von in [13]. In der Theorie der topologischen Vektorräume wird eine solche Minimallösung (im engeren Sinne) manchmal auch als Lotpunkt bezeichnet.[14]
  • Das Konzept der besten Approximation (englisch best approximation) findet man im gleichen Sinne in dem allgemeineren Zusammenhang der metrischen Räume. Ist ein solcher und sind darin ein fixierter Raumpunkt sowie eine Teilmenge gegeben, so bezeichnet man – wie oben!– eine Minimallösung von auf als beste Approximation von bezüglich (oder ähnlich). Dies ist demnach ein Element , welches die Gleichung erfüllt.[15][16]
  • Die Zahl nennt manche Autoren auch die Minimalabweichung von bezüglich (oder ähnlich).[11]

Sätze[Bearbeiten | Quelltext bearbeiten]

Die folgenden Sätze zählen zu den Resultaten, die im Zusammenhang mit Fragestellungen zu Minimallösungen oft zur Anwendung kommen.

Minimallösungen in der Allgemeinen Topologie und Analysis[Bearbeiten | Quelltext bearbeiten]

Hier ist als besonders wichtiges Resultat die folgende Version des Weierstraß'schen Satzes vom Minimum zu nennen :[17]

Gegeben seien ein topologischer Raum und darin eine nichtleere kompakte oder folgenkompakte Teilmenge sowie eine unterhalbstetige Funktion .
Dann besitzt besitzt auf eine Minimallösung.

Minimallösungen in der konvexen Optimierung[Bearbeiten | Quelltext bearbeiten]

Hier ist zunächst der folgende einfache Satz zu erwähnen, der den Zusammenhang zwischen lokalen und globalen Minimallösungen behandelt:[18]

Gegeben seien ein reeller Vektorraum und darin eine konvexe Teilmenge sowie ein Raumpunkt . Weiter sei eine konvexe Funktion, die in eine lokale Minimallösung haben möge.
Dann besitzt auch auf ganz eine Minimallösung und der zugehörige Minimalwert ist .

Darüber hinaus eine Reihe von weiteren Ergebnissen. Hier ist nicht zuletzt der folgende Charakterisierungssatz der konvexen Optimierung zu nennen:[19]

Gegeben seien ein reeller Vektorraum und darin eine konvexe Teilmenge sowie ein Raumpunkt . Weiter sei eine konvexe Funktion.
Dann ist genau dann eine Minimallösung von auf , wenn für alle in Hinblick auf das rechtsseitige Gâteaux-Differential die Ungleichung erfüllt ist.

Hieraus ergibt sich als Folgerung:[20]

Sind im euklidischen Raum ein konvexes Gebiet gegeben und darin ein Raumpunkt sowie eine konvexe differenzierbare Funktion , so ist eine Minimallösung von auf genau dann, wenn das totale Differential der Nullvektor des ist.

Der Charakterisierungssatz führt in reellen Prähilberträumen (und speziell in reellen Hilberträumen!) wegen der dort gegebenen reichhaltigen geometrischen Struktur zu einem grundlegenden Approximationssatz, welcher die Bedingungen beschreibt, unter denen dort beste Approximationen gewährtleistet sind. Dieser Approximationssatz ist folgendermaßen zu formulieren:[21]

Sei ein reeller Prähilbert- oder Hilbertraum (mit als innerem Produkt) und seien darin eine konvexe Teilmenge sowie ein Raumpunkt gegeben.
Unter diesen Gegebenheiten ist ein die (eindeutig bestimmte!) beste Approximation von bezüglich genau dann, wenn für alle die Ungleichung erfüllt ist.

Mit diesem Approximationssatz gewinnt man direkt den folgenden Projektionssatz:[22]

Sei (wie zuvor) ein reeller Prähilbert- oder Hilbertraum und seien darin ein linearer Unterraum gegeben sowie ein Raumpunkt .
Unter diesen Gegebenheiten ist ein genau dann die beste Approximation von bezüglich , wenn für alle die Gleichung erfüllt ist. Mit anderen Worten: Ein ist die beste Approximation von bezüglich genau dann, wenn der Differenzvektor zu allen senkrecht steht.

Minimallösungen und reflexive Banachräume[Bearbeiten | Quelltext bearbeiten]

Hier sind nicht zuletzt die beiden folgenden Sätze bedeutsam:[23]

Der Satz von James

Dieser Satz geht auf den Mathematiker Robert Clarke James zurück und besagt folgendes:[24]

Ein Banachraum ist genau dann reflexiv, wenn jedes stetige lineare Funktional auf der abgeschlossenen Einheitskugel eine Minimallösung besitzt.
Der Satz von Schauder-Mazur

Dieser den beiden Mathematikern Juliusz Schauder und Stanisław Mazur zugerechnete Satz lässt sich wie folgt darstellen:[25]

Ist ein reflexiver Banachraum und ist eine darin gelegene nichtleere, abgeschlossene, konvexe und beschränkte Teilmenge, so besitzt jede stetige konvexe Funktion auf eine Minimallösung.

Minimallösungen und Stabilitätfragen[Bearbeiten | Quelltext bearbeiten]

Zur Stabilitätfrage im Zusammenhang mit Minimallösungen gibt es einen allgemeinen Stabilitätssatz, der folgendermaßen dargestellt werden kann:[26][27]

Gegeben seien ein metrischer Raum und darin zwei Folgen von nichtleeren Teilmengen sowie Funktionen .
Für jedes gebe es eine Minimallösung von auf .
Hierzu soll gelten:
(i) Die seien stetig konvergent gegen .
(ii) liege als Teilmenge in dem im Sinne von Kuratowski verstandenen oberen Limes .
Dann ist jeder Häufungspunkt der Folge , der in liegt, eine Minimallösung von auf .

Minimallösungen (im engeren Sinne) in der Linearen Approximationstheorie[Bearbeiten | Quelltext bearbeiten]

Hier kennt man einen Existenz- und Eindeutigkeitssatz, der sich zusammengefasst wie folgt angeben lässt:[28][14][29]

Sei ein strikt konvexer normierter Raum und sei darin eine abgeschlossene, lokalkompakte und konvexe Teilmenge gegeben. Dann gibt es für jeden Raumpunkt bezüglich immer genau eine Minimallösung – also genau eine beste Approximation (oder einen Lotpunkt)! – . Dies gilt insbesondere dann, wenn in ein Untervektorraum endlicher Dimension ist.

Damit eng zusammenhängend ist der (von dem ungarischen Mathematiker Alfréd Haar im Jahr 1917 vorgelegte) Eindeutigkeitssatz von Haar, der folgendes besagt:[30][31]

Sei ein kompakter Raum und sei hierzu der (mit der Maximumsnorm versehene!) Funktionenraum der auf stetigen (reell- oder komplexwertigen) Funktionen.
Hier sei ein Untervektorraum der endlichen Dimension und erfülle die Bedingung, dass jede nicht mit der Nullfunktion identische Funktion höchstens Nullstellen in besitzen soll.
Dann gibt es bezüglich für jede Funktion exakt eine Minimallösung .

Ein in der Linearen Approximationstheorie wichtiger Satz ist auch der (nach dem Mathematiker Ivan Singer benannte) Satz von Singer, der eine Charakterisierung der besten Approximationen liefert und folgendes besagt:[32][33]

Es seien ein reeller normierter Raum und der zugehörige Dualraum der reellwertigen stetigen linearen Funktionale, wobei dessen Operatornorm ebenfalls mit bezeichnet sein soll, und es seien weiter ein Untervektorraum sowie ein Raumpunkt gegeben.
Dann gilt:
Ein Unterraumpunkt ist eine beste Approximation von bezüglich genau dann, wenn für es ein gibt, welches die folgenden drei Bedingungen erfüllt:
(1) .
(2) für alle .
(3) .

Erläuterungen und Anmerkungen[Bearbeiten | Quelltext bearbeiten]

  • Die obigen Infima existieren stets, da , versehen mit der üblichen Totalordnung , ein vollständiger Verband ist.
  • Für Funktionenfolgen auf metrischen Räume ist der Begriff der stetigen Konvergenz eine Verschärfung des Begriffs der punktweisen Konvergenz.[34][35]
  • Ein Punkt gehört dem im Sinne von Kuratowski verstandenen oberen Limes definitionsgemäß genau dann an, wenn es dazu in eine streng monoton wachsende Folge sowie eine Auswahlfolge gibt mit .[36][37]
  • Die im Eindeutigkeitssatz von Haar auftretende Bedingung ist die sogenannte Haarsche Bedingung. Ein endlich-dimensionaler Funktionenunterraum, der in einem Funktionenraum dieser Bedingung genügt, wird als Haarscher Teilraum (englisch Haar subspace) oder Haarscher Raum bezeichnet.[30][38][39][40][31]
  • Der Eindeutigkeitssatz von Haar wird bei manchen Autoren – wegen der in Approximationstheorie hierzu erbrachten Leistungen des sowjetischen Mathematikers Andrej Nikolajewitsch Kolmogoroff – auch Satz von Kolmogoroff-Haar genannt.[40]
  • Für einen endlich-dimensionalen (!) normierten Raum sowie eine abgeschlossene Teilmenge besitzt jeder Raumpunkt bezüglich eine Minimallösung im engeren Sinne, also in eine beste Approximation.[41]
  • Für einen normierten Raum (und speziell für einen normierten Funktionenraum) und jeden darin fest gewählten Raumpunkt ist die zugehörige Funktion mit stets ein konvexes Funktional[42] und in jedem Falle stetig.
  • Ist der -dimensionale euklidische Raum und sind hier eine abgeschlossene und konvexe Teilmenge gegeben sowie eine stetige Funktion , so bezeichnet man die Menge gelegentlich auch als Minimalmenge. Sie ist im stets abgeschlossen und im Falle, dass konvex ist, eine konvexe Teilmenge des euklidischen Raums.[43]
  • Neben den oben aufgeführten Sätzen gibt es eine Fülle weiterer nennenswerter Resultate. Als wichtiges Beispiel kann hier der Approximationssatz für gleichmäßig konvexe Räume gelten, der bedeutsam für die gesamte Approximationstheorie ist.[44] Daneben wäre auch der Fundamentalsatz der Variationsrechnung zu nennen.

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Lothar Collatz: Funktionalanalysis und numerische Mathematik. Unveränderter Nachdruck der 1. Auflage von 1964 (= Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete. Band 120). 2. Auflage. Springer-Verlag, Berlin, Heidelberg, New York 1968, ISBN 3-540-04135-4 (MR0165651).
  • Lothar Collatz, Werner Krabs: Approximationstheorie. Tschebyscheffsche Approximation mit Anwendungen (= Teubner Studienbücher). B. G. Teubner, Stuttgart 1973, ISBN 3-519-02041-6 (MR0445153).
  • Klaus Floret: Weakly Compact Sets. Lectures held at S.U.N.Y., Buffalo, in Spring 1978 (= Lecture Notes in Mathematics. Band 801). Springer-Verlag, Berlin 1980, ISBN 3-540-09991-3 (MR0576235).
  • Alfréd Haar: Die Minkowskische Geometrie und die Annäherung an stetige Funktionen. In: Mathematische Annalen. Band 78, 1917, S. 294–311 ([1]).
  • Harro Heuser: Funktionalanalysis. Theorie und Anwendung (= Mathematische Leitfäden). 4. Auflage. B. G. Teubner, Wiesbaden 2006, ISBN 3-8351-0026-2 (MR2380292).
  • Rainer Hettich, Peter Zencke: Numerische Methoden der Approximation und semi-infiniten Optimierung (= Teubner Studienbücher Mathematik). B. G. Teubner, Stuttgart 1982, ISBN 3-519-02063-7 (MR0653476).
  • Peter Kosmol: Optimierung und Approximation (= De Gruyter Studium). 2. Auflage. Walter de Gruyter & Co., Berlin 2010, ISBN 978-3-11-021814-5 (MR2599674).
  • Peter Kosmol, Dieter Müller-Wichards: Optimization in Function Spaces. With stability considerations in Orlicz spaces (= De Gruyter Series in Nonlinear Analysis and Applications. Band 13). Walter de Gruyter & Co., Berlin 2011, ISBN 978-3-11-025020-6 (MR2760903).
  • Gottfried Köthe: Topologische lineare Räume. I. (= Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete. Band 107). 2. verbesserte Auflage. Springer Verlag, Berlin, Heidelberg, New York 1966 (MR0194863).
  • Jürg T. Marti: Konvexe Analysis (= Lehrbücher und Monographien aus dem Gebiet der Exakten Wissenschaften, Mathematische Reihe. Band 54). Birkhäuser Verlag, Basel, Stuttgart 1977, ISBN 3-7643-0839-7 (MR0511737).
  • Günter Meinardus: Approximation von Funktionen und ihre numerische Behandlung (= Springer Tracts in Natural Philosophy. Band 4). Springer Verlag, Berlin, Göttingen, Heidelberg, New York 1964 (MR0176272).
  • Arnold Schönhage: Approximationstheorie (= de Gruyter Lehrbuch). Walter de Gruyter & Co., Berlin, New York 1971 (MR0277960).
  • Ivan Singer: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. Translation of the original Romanian version "Cea mai bună aproximare în spații vectoriale normate prin elemente din subspații vectoriale". Translated by Radu Georgescu (= Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete. Band 171). Springer Verlag, Berlin, Heidelberg, New York 1970 (MR0270044).
  • A. Wayne Roberts, Dale E. Varberg: Convex Functions (= Pure and Applied Mathematics. Band 57). Academic Press, New York, San Francisco, London 1973 (MR0442824).
  • Guido Walz [Red.]: Lexikon der Mathematik in sechs Bänden. Erster Band. A bis Eif. Spektrum Akademischer Verlag, Heidelberg, Berlin 2001, ISBN 3-8274-0303-0 (MR1839735).

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Peter Kosmol: Optimierung und Approximation. 2010, S. II (Vorwort), S. 8 ff., S. 79 ff.
  2. Lothar Collatz: Funktionalanalysis und numerische Mathematik. 1968, S. 320 ff.
  3. Lothar Collatz, Werner Krabs: Approximationstheorie. 1973, S. 12 ff., S. 38 ff.
  4. Günter Meinardus: Approximation von Funktionen und ihre numerische Behandlung. 1964, S. 1 ff.
  5. Peter Kosmol, Dieter Müller-Wichards: Optimization in Function Spaces. 2011, S. 1 ff., S. 385
  6. Weder auf den zahlentheoretischen Aspekt noch auf den in der Theorie der Differentialungleichungen wird hier eingegangen. Eine Darstellung zu den Minimallösungen der pellschen Gleichung findet man etwa in dem Lehrbuch „Einführung in die Zahlentheorie“ von Peter Bundschuh (Springer 1988). Der Begriff der Minimallösung einer Differentialungleichung wird kurz im dritten Band des Lexikons der Mathematik in sechs Bänden (Spektrum Akademischer Verlag, Heidelberg & Berlin 2001, S. 425) dargelegt.
  7. a b Kosmol, op. cit., S. 8
  8. Meinardus, op. cit., S. 63
  9. Kosmol, op. cit., S. 98 ff.
  10. Jürg T. Marti: Konvexe Analysis. 1977, S. 31
  11. a b Guido Walz [Red.]: Lexikon der Mathematik. Erster Band. 2001, S. 202
  12. Arnold Schönhage: Approximationstheorie. 1971, S. 8 ff., S. 148 ff.
  13. Harro Heuser: Funktionalanalysis. 2006, S. 29 ff., S. 572 ff.
  14. a b Gottfried Köthe: Topologische lineare Räume. I. 1966, S. 346 ff.
  15. Kosmol, op. cit., S. 68 ff.
  16. Ivan Singer: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. 1970, S. 377 ff.
  17. Kosmol, op. cit., S. 450
  18. A. Wayne Roberts, Dale E. Varberg: Convex Functions. 1973, S. 122–128, S. 123
  19. Kosmol, op. cit., S. 78
  20. Kosmol, op. cit., S. 79
  21. Kosmol, op. cit., S. 100–101
  22. Kosmol, op. cit., S. 102
  23. Kosmol, op. cit., S. 388 ff.
  24. Kosmol, op. cit., S. 391
  25. Kosmol, op. cit., S. 390
  26. Kosmol, op. cit., S. 71
  27. Kosmol / Müller-Wichards, op. cit., S. 142
  28. Collatz, op. cit., S. 323
  29. Meinardus, op. cit., S. 1
  30. a b Meinardus, op. cit., S. 15–16
  31. a b Rainer Hettich, Peter Zencke: Numerische Methoden der Approximation und semi-infiniten Optimierung. 1982, S. 115–116
  32. Kosmol, op. cit., S. 401
  33. Kosmol / Müller-Wichards, op. cit., S. 109
  34. Kosmol, op. cit., S. 71
  35. Kosmol / Müller-Wichards, op. cit., S. 134
  36. Kosmol, op. cit., S. 69
  37. Kosmol / Müller-Wichards, op. cit., S. 131
  38. Kosmol, op. cit., S. 298
  39. Kosmol / Müller-Wichards, op. cit., S. 12
  40. a b Marti, op. cit., S. 58–59
  41. Kosmol, op. cit., S. 68
  42. Vgl. Hettich / Zencke, op. cit., S. 39! Hettich und Zencke führen den Beweis zwar nur für den Fall des Raums der auf einem Kompaktum des stetigen reellwertigen Funktionen. Der Sachverhalt gilt jedoch offensichtlich allgemeiner.
  43. Vgl. Marti, op. cit., S. 184! Marti erwähnt hier die Konvexitätsbedingung für die Funktion zwar nicht. Dies ist jedoch offenbar gemeint. Der hier dargestellte Sachverhalt gilt auch allgemein in normierten Räumen .
  44. Schönhage, op. cit., S. 15