Benutzer:Dryhand58/Freiberger Gangerzlagerstätte - Ergänzungen und Erweiterung

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Geologie, Tektonik und Genese[Bearbeiten | Quelltext bearbeiten]

Schematische Gangkarte des Freiberger Lagerstättenbezirkes; nach H. Müller 1901 und H. Pforr u. a. 1982 mit Revier- und Grubenfeldeinteilung sowie ausgewählten Schachtanlagen

Den geologischen Rahmen der Lagerstätte bilden metamorphe Serien, wie proterozoische Orthogneise („Freiberger Graugneis“, „Freiberger Gneiskuppel“) in der Mitte und im Süden sowie altpaläozoische Glimmerschiefer und Phyllite im Norden. Östlich befinden sich ein granitischer Intrusivkörper („Naundorf – Niederbobritzscher Granit“) sowie permische Porphyrgänge.

Tektonisches Strukturschema des Freiberger Gangspaltensystems

Bereits im späten Proterozoikum und frühem Paläozoikum fand eine frühe Eisen- und Kupfervererzung statt. Ab dem späten Paläozoikum waren diese Gesteinsformationen weitestgehend konsolidiert. Mit dem Auseinanderbrechen des Großkontinentes Pangäa und den Öffnungsbewegungen der westlichen Thethys sowie des Zentral- und Nordatlantiks wirkten während der variszischen Orogenese (Oberkarbon bis zum Perm) im Betrachtungsraum erhebliche Druck- und Zugspannungen. In Folge dessen bildete sich zunächst ein überwiegend Nord-Süd-gerichtetes System von tiefreichenden Spalten innerhalb der Metamorphite: das Scherspaltensystem S 1. Darüber kam es auf Grund der Spannungsverhältnisse und der Materialeigenschaften des Umgebungsgesteines zur Entstehung eines weiteren Spaltensystems: das schiefwinklig zu den Scherspalten liegende sogenannte Fiederspaltensystem F 1 (siehe Abbildung zum tektonischen Strukturschema). Ausschlaggebend für diese Ausrichtung waren nicht nur orogenetische Bewegungsvektoren, sondern auch eine primär im Gneis vorhandene Gesteinsklüftung.

In die tiefreichenden Risse und Spalten drangen heiße, wässrige metallhaltige und nichtmetallhaltige Lösungsgemische magmatischen Ursprunges, sogenannte hydrothermale Lösungen ein, die auf Grund des hohen Druckes in der Tiefe auch bis zu ca. 400 °C noch in flüssiger Form vorlagen. Bei der mit dem weiteren Aufstieg verbundenen Abkühlung setzten sich entsprechend chemisch-physikalischer Gesetzmäßigkeiten für hydrothermale Lagerstätten typische Mineralfolgen ab. Während dieses (älteren) Zyklus kam es überwiegend zum Absatz von wirtschaftlich bedeutsamen Mineralisationsfolgen der Quarz-Polymetall-Assoziation (ältere Bezeichnung: kb-Formation, siehe unten) und der karbonatischen Silber-Sulfid-Assoziation („eb-Formation“, siehe Abschnitt Erzparagenesen).

Ein zweiter (jüngerer) Mineralisationsprozess fand während der alpidischen Orogenese statt (Zechstein bis Tertiär). Durch die gegenläufigen Bewegungsrichtungen der afrikanischen und eurasischen Kontinentalplatten stagnierte die allgemeine Krustendehnung und wurde von Kompressions- und Scherbewegungen abgelöst (siehe hierzu → Kontinentaldrift). Wie schon in Folge der variszischen Tektonik entstand ein weiteres tiefreichendes Spaltensystem im Festgesteinskörper. Diese Risse und Spalten bildeten das überwiegend Ost-West ausgerichtete Scher- und Fiederspaltensystem S 2 und F 2. Damit entstanden ein weiters mal Aufstiegswege und Absatzräume für hydrothermale Lösungen aus tiefliegenden magmatischen Krustenbereichen. Die jüngeren Mineralisationsabfolgen bestehen aus der Eisen-Baryt-Assoziation („eba-Formation“), der Fluorbarytischen Bleierz-Assoziation („fba-Formation“) und der Wismut-Cobalt-Nickel-Silber-Assoziation („BiCoNiAg-Formation“).

Bei Gangerzlagerstätten wurden im Allgemeinen tiefliegende magmatische Intrusionskörper als sogenannte „Erzbringer“ als Quellen hydrothermaler Vererzungen vermutet bzw. auch nachgewiesen. Für die Freiberger Gangerzlagerstätte konnte bisher auch mit tiefreichenden Forschungsbohrungen über 1.800 m keine granitische Intrusion nachgewiesen werden, so dass die Herkunft hydrothermaler Lösungen aus wesentlich tieferen Krustenbereichen spekulativ vermutet werden muss.