Benutzer:Hfst/zweirad

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Das Zweirad befindet sich im labilen Gleichgewicht. Entgegen landläufiger Meinung ist dies zwar auch bei einem vierrädrigen Fahrzeug der Fall, jedoch ist die Auflagefläche hier wesentlich größer, zum Kippen muss der Schwerpunkt bei einem vierrädrigen Fahrzeug zunächst erheblich angehoben werden, was beim Zweirad wegen der Rundung der Reifen so gut wie nicht der Fall ist.

Dass das Zweiradfahren trotzdem auch einem Menschen mit durchschnittlicher Fähigkeit sich bzw. ein System, dessen Teil er ist, auszubanlancieren möglich ist, liegt daran, dass die Eigenschaften des Zweirades den Fahrer ihn dabei unterstützen. Ein nachhaltiges Gleichgewicht des Systems Zweirad/Fahrer beruht bei schnellerer Fahrt zu einem Teil auf der Fähigkeit des Fahrers, es durch kleine, habitualisierte Korrekturbewegungen auszubalancieren, zum anderen auf der Zweiradkonstruktion und verschiedenen physikalischen Effekten. Sie unterstützen ihn, so dass sogar ein freihändiges Fahren möglich ist.

Das Zweirad im labilen Gleichgewicht[Bearbeiten | Quelltext bearbeiten]

Ein Zweirad berührt den Boden an zwei Stellen – den Auflageflächen der Reifen. Eine auch nur geringe Neigung der senkrecht zur Fahrbahn stehenden Rahmenebene führt beim stehenden Zweirad zum Umkippen. Sobald der Schwerpunkt nicht mehr über der die Auflageflächen umfassenden und verbindenden Unterstützungsfläche liegt, kippt das Rad um.

Durch extremes Einschlagen des Lenkers lässt sich die Unterstützungsfläche für den Schwerpunkt vergrößern. Nur geübte Menschen können auf einem stehenden Zweirad für längere Zeit einen Sturz vermeiden. Da diese Probleme beim Geradeausfahren nicht bestehen, muss die Fahrdynamik dafür ausschlaggebend sein.

Das dynamische Gleichgewicht[Bearbeiten | Quelltext bearbeiten]

Einem Umkippen in eine Richtung während der Fahrt wird dadurch entgegengewirkt, dass der Lenker in die gleiche Richtung ausschlägt, eine kurze Kurve einleitet und nun durch die Zentrifugalkraft zur anderen Seite aufgerichtet wird. Dabei lässt sich ein Überkippen kaum vermeiden, der Lenker muss wiederum in die andere Richtung gelenkt werden und so weiter.

Eine Geradeausfahrt kommt daher einem kaum merkbaren Pendeln um die Gleichgewichtslage zwischen Kippen und Wiederaufrichten gleich. Bei langsamer Fahrt äußert sich das Pendeln durch starke, abwechselnde Lenkausschläge.

Bei freihändigem Fahren hilft das seitliche Neigen des Körpers zur Erzeugung eines entgegengesetzten Schweremoments. Freihändiges Fahren ist daher bei langsamer Fahrt nahezu unmöglich. Erst der weiter unten beschriebene Nachlauf und die Kreiselkräfte ermöglichen dies, indem sie bei einer Radneigung einen kontrollierbaren Lenkausschlag auslösen und so das Rad wieder in die gerade Fahrlinie zurückbringen, beziehungsweise eine stabile Kurvenfahrt ermöglichen.

Die Laufräder als Kreisel[Bearbeiten | Quelltext bearbeiten]

Bei zunehmender Geschwindigkeit haben sowohl Lenkbewegungen als auch Körperschwerpunktverlagerungen (Balancieren) eine untergeordnete Bedeutung. Das gilt grundsätzlich für die Geradeausfahrt wie für Kurven. Ab einer Geschwindigkeit von 20 km/h werden die auf die Laufräder wirkenden Kreiselkräfte so stark, dass ein stabiles Geradeausfahren und ein großer Teil der Lenkmanöver auch freihändig möglich sind. Der Beitrag der rotierenden Laufräder als Kreisel zur Stabilisierung der Fahrt liegt darin, die zuvor geschilderten nötigen Lenkausschläge zu unterstützen bzw. beim Freihändigfahren auszulösen. Dadurch werden sowohl kleine, bei der Geradeausfahrt notwendige Korrekturen „automatisch“ ausgelöst als auch die länger aufrechtzuerhaltenden Lenkausschläge bei Kurvenfahrten.

Kreiseleffekte: Stabilisation und Präzession[Bearbeiten | Quelltext bearbeiten]

Das Vorderrad stellt einen symmetrischen, nutationsfreien Kreisel dar; die Drehimpuls-, Rotations- und Figurenachsen sind identisch. Durch ein seitliches Neigen des Vorderrades wirkt ein Drehmoment, das senkrecht zum Drehimpuls steht. Dies führt zu einer Drehimpulsänderung und damit zu einer Präzessionsbewegung (s. auch Gyroskopischer Effekt bei Zweirädern): Der Lenker dreht sich in die Richtung der Neigung. Umgekehrt führt eine Drehung des Vorderrades um die Lenkachse zu einem Neigen des Zweirades in die entgegengesetzte Richtung aufgrund der Präzession.

Das Hinterrad präzediert nicht, trägt aber zur Kreiselwirkung bei, indem seine Neigung auf das Vorderrad übertragen wird, was zu einer Verstärkung der Kreiselwirkung führt und das Rad insgesamt stabilisiert.

Der entscheidende Beitrag des Fahrers zur dauerhaften Erhaltung des Gleichgewichts[Bearbeiten | Quelltext bearbeiten]

Wie Experimente bestätigen (s. u.), kann ein Zweirad wie ein über eine Fläche gerollter, schmaler Autoreifen seine Geradeausfahrt ohne Fahrereinwirkung eine Weile beibehalten. Diese dem Zweirad bzw. seinen Laufrädern innewohnende Eigenschaft lässt sich durch die Kreiselkräfte erklären. Bei einmaligem Auftreten von Störkräften und bei Verlangsamung der Geschwindigkeit nach einer bestimmten Zeit wird das Rad instabil, der gerollte Reifen beginnt zu taumeln und fällt schließlich um. Dies liegt überwiegend am Zeitverzug der Reaktion (s. o.: Präzession). Dadurch beginnen entgegengesetzte, rhythmische Neigungen und Drehungen, die aufschwingen und schließlich unkontrollierbar werden. Durch den Nachlauf (s. u.) wird die wechselseitige Verstärkung der Kräfte zwar gedämpft, aber es verbleibt ein entscheidender Rest an Instabilität.

Der Fahrer kann durch ein geschultes Gleichgewichtsempfinden, ein ruhiges Sitzen auf dem Sattel bzw. eine saubere Tretbewegung auch beim sportlichen Radfahren diese Instabilität in der Geradeausfahrt kompensieren. Bei der Kurvenfahrt unterstützt er die Stabilität durch seine Fahrtechnik (siehe Abschnitt Kurvenfahrt). Er bleibt die entscheidende Kraft – ohne ihn gerät jedes Zweirad irgendwann aus der Kontrolle.

Experimente und Theorien zur Bedeutung der Kreiselkräfte[Bearbeiten | Quelltext bearbeiten]

David E. H. Jones fand experimentell, dass mit Fahrer der Einfluss der Kreiselwirkungen bei normalen Geschwindigkeiten sehr klein sei, ohne Fahrer dagegen stabilisierten sie das angeschobene oder einen Hügel hinunterfahrende freilaufende Rad. Er montierte knapp oberhalb des Bodens ein drittes Laufrad neben das Vorderrad und drehte dieses in Rückwärtsrichtung, mit dem Ziel, die Kreiselwirkungen beider Vorderräder in etwa aufzuheben. Er konnte jedoch normal fahren, auch freihändig. Ohne Fahrer dagegen fiel das der Kreiselwirkungen beraubte Zweirad auf der Stelle um. [1]

Felix Klein und Arnold Sommerfeld haben in ihrer Theorie des Kreisels eine erschöpfende theoretisch-analytische Abhandlung über die Kreiselwirkungen beim Zweirad geliefert. Sie stellen fest, dass sich zwischen 16 und 20 km/h ein stabiler Bereich befindet, in dem allein die Kreiselwirkungen die Stabilisierung zu generieren vermögen, trotz der geringen Radmassen. Es ist dem Fahrer hier möglich, freihändig zu fahren. Unterhalb davon reicht der Lenkausschlag, den die Kreiselwirkung verursacht, nicht aus, um eine ausreichend große aufrichtende Zentrifugalkraft hervorzurufen; der Fahrer muss lenkend eingreifen. Fährt man sehr viel schneller, werden keine Kreiselwirkungen mehr spürbar. Die Hinterradspur nähert sich so schnell der Vorderradspur an, dass sich beide zusammen wie ein starres System verhalten. Das Fahrgefühl gleicht dem Fahren in einer schmalen Schiene; das Lenken und damit das Aufrechtbleiben ist erschwert.

Klein und Sommerfeld erkennen aber an, dass ein Fahrrad eher auf Energieersparnis und Leichtigkeit als auf Optimierung der Kreiselwirkungen konstruiert und durch die ausgleichenden Bewegungen eines Fahrers die Eigenstabilisierung „nicht gerade [..] erforderlich [..] ist“. Sie ziehen dennoch als Fazit, dass „[..] es doch kaum von der Hand zu weisen [ist], daß die Kreiselwirkungen zur Aufrechterhaltung des Gleichgewichts bei der Fahrt beitragen, wir möchten sagen, in besonders intelligenter Weise beitragen; sind sie es doch, die vermöge der Phase ihrer Wirkung zuerst ein Überfallen des Rades spüren und die dann die viel stärkeren, aber etwas langsamen Centrifugalwirkungen in den Dienst der Stabilität spannen.“ [2]

Kurvenfahrt[Bearbeiten | Quelltext bearbeiten]

Schräglage in einer Linkskurve

Eine Kurve wird nicht durch ein Lenken in die gewünschte Richtung eingeleitet. Laufradspuren auf Sand oder Schnee zeigen, dass zunächst eine leichte Lenkbewegung in die entgegengesetzte Richtung erfolgt. Schlüge man einfach nach links ein, bewegte sich die Auflagefläche des Reifens nach links unter dem Schwerpunkt weg, so dass die Schwerkraft ein Kippen nach rechts bewirken würde. Um die Kurve zu fahren, ist aber grundsätzlich eine Neigung in die gewünschte Kurvenrichtung, in diesem Falle nach links, notwendig.

Um das Rad in diese Schräglage zu bringen, muss es zunächst durch eine der gewünschten Richtung entgegengesetzte (kurze und leichte!) Lenkbewegung zum Kippen gebracht werden.

Auf den Schwerpunkt des Motorradfahrer wirken zwei Kräfte: Einerseits die Zentrifugalkraft

in radialer Richtung und die Gewichtskraft

in vertikaler Richtung. Dabei sind

  • Masse von Fahrer und Fahrzeug
  • Geschwindigkeit
  • Kurvenradius
  • Gewichtskraft
  • Erdbeschleunigung.

Ist das Motorrad um Richtung Kurvenzentrum geneigt, so erzeugt ein aufrichtendes Moment

und die Gewichtskraft ein kippendes Moment

Dabei ist der Abstand des Schwerpunkts vom Boden bei aufrechter Fahrt. Während der Kurvenfahrt gilt nun

,

das heißt während der Kurvenfahrt darf unter Annahme eines konstanten Kurvenradius die Geschwindigkeit nicht reduziert werden.

Soll nun die Kurve verlassen werden, so ist das Motorrad wieder aufzurichten, d.h. Ziel ist . Dazu muss gelten. Da gleichzeitig geht muss beim Verlassen der Kurve die Geschwindigkeit erhöht werden.

Das Gleichgewicht ist nicht stabil, das heißt wenn das Motorrad zu stark geneigt ist, wirkt das resultierende Moment in Richtung weiter kippen, während im umgekehrten Fall das Moment in Richtung Aufrichten überwiegt. Über die Effekte, die trotzdem ein stabiles Fahren ermöglichen sei auf Fahrradfahren insbesondere der Abschnitt Kurvenfahrt verwiesen.


Bestimmung des Neigungswinkels[Bearbeiten | Quelltext bearbeiten]

Eine Kurve kann als Teil einer Kreisbahn betrachtet werden. Legt sich der Fahrer in die Kurve, ist der Neigungswinkel, bei dem er nicht stürzt, abhängig von Fahrgeschwindigkeit und Kurvenradius. Je schneller die Fahrt und je enger die Kurve, desto größer muss der einzunehmende Neigungswinkel sein. Dieser ist eindeutig bestimmbar: Die Verbindungslinie zwischen Schwerpunkt und Unterstützungsfläche muss nämlich in Richtung der Resultierenden von Fliehkraft und Anziehungskraft verlaufen. Für den Neigungswinkel zwischen der Resultierenden und der Senkrechten gilt daher:

Dabei ist v die Geschwindigkeit, r der Kurvenradius und g die Schwerebeschleunigung, auf der Erde 9,81 m·s–2.

Erwachsenen Menschen fällt das Erlernen des Fahrradfahrens häufig deshalb so schwer, weil die erforderliche Bewegungskoordination der Intuition entgegenläuft, auch wenn sie es von der Logik her schnell erfassen können.

Für einen ruhenden Beobachter wirkt auf das Zweirad eine zum Kreismittelpunkt gerichtete Zentripetalkraft, die durch die Haftreibung der Laufräder aufgebracht wird. Der Haftreibungskoeffizient bestimmt nun den maximalen Neigungswinkel, dessen Überschreitung zum Wegrutschen des Vorderrades und zum Sturz führt. Vor engen Kurven und auf schmierigen, schotterigen oder glatten Bodenbelägen ist also ein Abbremsen notwendig, weil die Reibung sonst nicht ausreicht, eine der Fliehkraft betragsgleiche Zentripetalkraft aufzubringen.

Kreiselkräfte und Fahrereinfluss bei Kurvenfahrten[Bearbeiten | Quelltext bearbeiten]

Wie schon beim Geradeausfahren, so sind es auch hier wieder die Kräfte der sich drehenden Laufräder, die die Fahrt durch Kurven entscheidend unterstützen. Haben die Räder durch die Präzession beim Kippen in der Geradeausfahrt einen Lenkeinschlag bewirkt, der korrigierend wirkte, so unterstützen sie nun den für die Kurvenfahrt notwendigen Einschlag des Vorderrades. Der Nachlauf (s.u.) dämpft diesen Einschlag, wobei kürzere Nachläufe bessere Kurveneigenschaften und schlechtere Geradeauslaufeigenschaften, größere Nachläufe die umgekehrten Eigenschaften bewirken.

Dem Fahrer ist auch hier die Feinabstimmung überlassen, ohne die eine kontrollierte Fahrt nicht möglich wäre. Beim sportlichen Radfahren (Radrennsport) sind zum erfolgreichen Durchfahren von Kurven weitere Techniken unerlässlich. Beispielsweise muss der Fahrer eine Körperspannung aufbauen, was durch Durchdrücken des fast gestreckten kurvenäußeren Beines (Pedale im tiefsten Punkt) bewirkt wird. Im Mountainbikesport hingegen, wo es eher um schnelle Verlagerung des Körperschwerpunktes aufgrund der Bodenbeschaffenheiten geht, hat sich eine Waagrechtstellung der Pedale als eher zweckmäßig erwiesen.

Überhöhung[Bearbeiten | Quelltext bearbeiten]

Der Kurvenradius kann erheblich verkleinert werden, wenn die Fahrbahn nicht eben, sondern in Richtung Kurvenmittelpunkt geneigt ist (Überhöhung). Diese Hilfe machen sich sowohl Cyclo-Cross-Fahrer und Mountainbiker als auch Bahnfahrer zunutze:

  • Im Cyclocross- und Mountainbike-Sport nutzt man z. B. ausgefurchte Kurven, die hierdurch eine Überhöhung aufweisen, um Kurven schneller zu durchfahren.
  • Im Bahnradsport weisen die Radrennbahnen grundsätzlich in den Kurven Überhöhungen zwischen 30 Grad (lange Freiluft-Zementbahnen mit größerer Haftreibung) und gewöhnlich 45 Grad Überhöhungswinkel auf (in Ausnahmefällen sogar darüber: die nicht mehr existierenden Bahnen in Münster und Frankfurt am Main hatten Überhöhungen von über 55 Grad).

Ausweichmanöver[Bearbeiten | Quelltext bearbeiten]

Bei Kurven, die im Zuge von kurzen Ausweichmanövern gefahren werden, ist die Technik des Gegenlenkens, um das Kippen einzuleiten, nicht notwendig, wenn der Fahrer anschließend die Fahrt auf der ursprünglichen Fahrlinie fortsetzen möchte. Statt der beschriebenen Technik lenkt der Fahrer das Zweirad an dem Hindernis vorbei, während sein Körperschwerpunkt sich fast geradeaus weiterbewegt. Demzufolge ist diese Technik auch nur zum Ausweichen vor bodennahen Hindernissen, Schlaglöchern usw. geeignet. Wird sie in der falschen Situation angewandt, führt sie zu schweren Stürzen. Die Entscheidung über die Technik trifft der Fahrer nicht bewusst, sondern in Zehntelsekundenschnelle intuitiv.