Korrelationsmatrix

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

In der Stochastik ist die Korrelationsmatrix eine symmetrische und positiv semidefinite Matrix, die die Korrelation zwischen den Komponenten eines Zufallsvektors erfasst. Die Korrelationsmatrix kann aus der Varianz-Kovarianzmatrix erhalten werden und umgekehrt.

Definition[Bearbeiten | Quelltext bearbeiten]

Die Korrelationsmatrix als Matrix aller paarweisen Korrelationskoeffizienten der Elemente eines Zufallsvektors enthält Informationen über die Korrelationen zwischen seinen Komponenten.[1] Analog zur Varianz-Kovarianzmatrix ist die Korrelationsmatrix definiert als[2]

,

wobei der Korrelationskoeffizient zwischen und ist.

Beispielsweise beinhaltet die zweite Zeile von die Korrelation von mit jeder anderen -Variablen. Die Korrelationsmatrix in der Grundgesamtheit wird als bzw. und die Stichproben-Korrelationsmatrix als bezeichnet. Wenn man die Diagonalmatrix definiert, dann erhält man durch und umgekehrt:

oder äquivalent

.

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

  • Sind alle Komponenten des Zufallsvektors linear unabhängig, so ist positiv definit.
  • Auf der Hauptdiagonalen wird die Korrelation der Größen mit sich selbst berechnet. Da der Zusammenhang der Größen strikt linear ist, ist die Korrelation auf der Hauptdiagonalen immer eins.
  • Bei Stichprobenziehung aus einer mehrdimensionalen Normalverteilung ist die Stichproben-Korrelationsmatrix Maximum-Likelihood-Schätzer der Korrelationsmatrix in der Grundgesamtheit .[3]

Stichproben-Korrelationsmatrix[Bearbeiten | Quelltext bearbeiten]

Eine Schätzung der Korrelationsmatrix in der Grundgesamtheit erhält man, indem man die Korrelationskoeffizienten in der Grundgesamtheit durch die empirischen Korrelationskoeffizienten (ihre empirischen Gegenstücke) ersetzt. Dies führt zur Stichproben-Korrelationsmatrix

.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Ludwig Fahrmeir, Thomas Kneib, Stefan Lang, Brian Marx: Regression: models, methods and applications. Springer Science & Business Media, 2013, ISBN 978-3-642-34332-2, S. 646.ff.
  2. Rencher, Alvin C., und G. Bruce Schaalje: Linear models in statistics., John Wiley & Sons, 2008., S. 77.
  3. Rencher, Alvin C., und G. Bruce Schaalje: Linear models in statistics., John Wiley & Sons, 2008., S. 247.