Benutzer:Helga Wiki/Ernst Maier-Reimer

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Ernst Maier-Reimer (9. März 1944 - 22. Juli 2013 in Hamburg) war habilitierter Physiker und Klimaforscher am Max-Planck-Institut für Meteorologie in Hamburg. Seine Forschungen zur Ozean-Modellentwicklung sagten die globale Erwärmung voraus. Für seine Forschungsergebnisse wurde er mehrfach ausgezeichnet. Seine wichtigste Leistung war 1987 die weltweit erste dreidimensionale Simulation des ozeanischen Kohlenstoffkreislaufs.[1][2]

Ernst Maier-Reimer ...

Anschließend studierte er Physik in Göttingen und promovierte mit einer nur 37 Seiten umfassenden Dissertation über die numerische Modellierung der Nordseeströmung am Institut für Ozeanographie in Hamburg. 1978 übernahm er eine Forschungsstelle am Max-Planck-Institut für Meteorologie (MPI-M) in Hamburg, um das globale Atmosphärenmodell des Instituts durch ein modernes Modell der Ozeane zu ergänzen.[3]

"Erstaunlicherweise wird die globale Erwärmung zu einer Abkühlung des Nordatlantiks führen, hat Ernst Maier-Reimer vom Hamburger Max-Planck-Institut für Meteorologie herausgefunden. Wenn es im Nordatlantik kälter, um ihn herum aber wärmer wird, verschärfen sich die Temperatur- gegensätze an der Polarfront – der „Wetterküche“ Europas. Maier-Reimer rechnet damit, daß sich Wetterextreme aller Art häufen und verschärfen."[4]


Preface: Ernst Maier-Reimer and his way of modelling the ocean

https://bg.copernicus.org/articles/16/751/2019/

Ernst Maier-Reimer was one of the most influential ocean model developers of modern times and at the same time a modest person (Hasselmann, 2013). As both a researcher and a supervisor of young researchers, he had a major impact on the field. In the past three to four decades, a substantial part of Ernst's research was dedicated to the numerical simulation of biogeochemical matter cycles in the global ocean.

Being a physicist by education, Ernst's oceanographic career started with numerical modelling of ocean currents at the oceanographic department (“Institut für Meereskunde”) of Hamburg University in the 1970s. After becoming a member of the then newly founded Max Planck Institute of Meteorology, he developed the global coarse-resolution Large Scale Geostrophic Ocean General Circulation Model (Maier-Reimer et al., 1993). Through his innovative combination of computational gridding, implicit numerical algorithms, and filtering methods, this “LSG” could use a long time step of 1 month. That model became by far the fastest dynamical global ocean model ever. In the 1980s, when supercomputers were only slowly emerging, the “LSG” was the only ocean model which could provide fully equilibrated prognostic water masses in the entire ocean within practical integration times. For any scientist who needed to run the global ocean repeatedly into full equilibrium, the “LSG” was the model of choice. In addition, Ernst provided a further dynamical ocean model (HOPE; see Marsland et al., 2003) that in contrast to the LSG allowed finer resolution and improved reproduction of ocean variability.

In the 1980s, the need for sound projections of climate under growing human-induced CO2 emissions became pronounced. Ernst provided – through collaboration with the Scripps Institution of Oceanography – the first interactive physical–biogeochemical ocean carbon cycle climate model (Bacastow and Maier-Reimer, 1991; Maier-Reimer and Hasselmann, 1987). Soon, further additions to the model were made (Maier-Reimer, 1993), including an ecosystem model inspired by the work of Fasham et al. (1993) and later on an interactive water column–sediment module based on the concept of Archer et al. (1993). Quantification of ocean CO2 uptake, ocean primary production, and paleo-climatic carbon cycle changes could now be conducted in a dynamical framework, making kinematic box models partly redundant.

This did not go unnoticed by ocean researchers who were working on ocean biogeochemistry more from the observing side. They approached Ernst in order to employ his model as a laboratory for exploring their ideas. Fruitful collaborations between Ernst and Egon T. Degens, Wallace S. Broecker, and many other colleagues developed.

In the 1990s, Ernst extended his physical and biogeochemical ocean models for use in coupled state-of-the-art Earth system models. The HAMOCC Model (Hamburg Ocean Carbon cycle Circulation Model) became an archetypal model version for marine carbon cycle modules in Earth system models. Olivier Aumont was strongly influenced by HAMOCC in building the PISCES model, the ocean biogeochemistry model coupled to the NEMO dynamical ocean model (Aumont et al., 2003). Over the years, more and more – coupled – tracer cycles were implemented into HAMOCC. The internal consistency of the model and its excellent mass conservation contributed to the credibility of the results produced.

Ernst was an excellent scientist who also had a broad range of knowledge outside of his key expertise. For students and colleagues, he always took time for discussions and to help them solve their problems. Many master theses and PhD theses in the field of ocean modelling were only successful because of Ernst's advice and support, especially in critical situations when the “chips were down”. A visit to Ernst's office in many cases could solve the modelling problems in an instructive and practical way. Ernst's key talent was his ability to separate the important from the less important. His models were elegant, efficiently programmed, and suited the purpose for which they were created.

This special issue of Biogeosciences aims at honouring Ernst's work. It brings together some of his former colleagues and students to commemorate his contributions and to show how his way of thinking, modelling, and quantifying continues to be present in ongoing work. The issue includes papers on additions of new tracer cycles to ocean biogeochemical models (Archer and Blum, 2018; Pätsch et al., 2018; van Hulten et al., 2017), on important questions related to ocean biogeochemical processes and their impacts on tracer distributions (Aumont et al., 2017; Rixen et al., 2019), and on tracer transport within the ocean (Ayache et al., 2017; Racapé et al., 2018; Rae and Broecker, 2018). Further papers address the topics of climate dynamics and impacts (Gaye et al., 2018; Heinze et al., 2018; Schwinger et al., 2017; Segschneider et al., 2018) as well as a critical appraisal of geoengineering (Lauvset et al., 2017). The collection is rounded off with a paper on model complexity (Kriest, 2017) and an outlook paper (Hense et al., 2017).

https://www.zeit.de/2001/01/200101_eisenduenger.xml/komplettansicht?utm_referrer=https%3A%2F%2Fwww.google.com%2F

Das Max-Planck-Institut widmete Maier-Reimer einen umfangreichen Nachruf. Der Klimaforscher Professor Mojib Latif schrieb:

"Ernst war einer der größten Wissenschaftler, die ich je getroffen habe. Und er war derjenige, der es mir ermöglichte, eine Karriere in der Wissenschaft zu machen. Ich hatte das Privileg, 20 Jahre mit ihm am Max-Planck-Institut für Meteorologie zu arbeiten."[6]

Der Leiter des Max-Planck-Instituts, der Nobelpreisträger für Physik Professor Klaus Hasselmann äußerte:

"Ich würde sogar so weit gehen zu behaupten, dass Ernst das Max-Planck-Institut nicht nur entscheidend geformt, sondern indirekt mit kreiert hat."[7]

Hans von Storch: https://klimazwiebel.blogspot.com/2013/07/ernst-maier-reimer-verstorben.html

Veröffentlichungen (Auswahl)

[Bearbeiten | Quelltext bearbeiten]
  • Maier-Reimer / Kriest / Segschneider / Wetzel: The HAMburg Ocean Carbon Cycle Model HAMOCC 5.1, in: Berichte zur Erdsystemforschung (Reports on Earth System Science) 14, Hrg. Max-Planck-Gesellschaft, Hamburg 2005.[8]
  • Maier-Reimer, E. / Ilyina, T. / Six, K. D. / Segschneider, J. / Li, H. / Núñez-Riboni, I. (2013), Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations, J. Adv. Model. Earth Syst., 5, 287– 315, doi:10.1029/2012MS000178.
  • Maier-Reimer, E. / Hasselmann, K.: Transport and storage of CO2 in the ocean. An inorganic ocean-circulation carbon cycle model. In: Climate Dynamics 2, 63–90 (1987).
  • Maier-Reimer, E. / Archer, D.: Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367, 260–263 (1994). https://doi.org/10.1038/367260a0
  • Maier-Reimer, E. (1993): Geochemical cycles in an ocean general circulation model. Preindustrial tracer distributions, In: Global Biogeochem. Cycles, 7( 3), 645– 677, doi:10.1029/93GB01355.
  • Maier-Reimer, E. / Aumont, O. / Blain, S. / Monfray, P.: An ecosystem model of the global ocean including Fe, Si, P colimitations, In: Global Biogeochem. Cycles, 17, 1060, 2003, doi:10.1029/2001GB001745, 2.
  • Maier-Reimer / Hasselmann / Höck u.a.: Time-dependent greenhouse warming computations with a coupled ocean-atmosphere model. Climate Dynamics 8, 55–69 (1992). https://doi.org/10.1007/BF00209163
  • Mehr unter google.scolar https://scholar.google.de/scholar?start=10&q=ernst+maier-reimer&hl=de&as_sdt=0,5&as_vis=1

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Das MPI-M trauert um Ernst Maier-Reimer. Abgerufen am 13. September 2022.
  2. Christoph Heinze, Klaus Hasselmann: Preface: Ernst Maier-Reimer and his way of modelling the ocean. In: Biogeosciences. Band 16, Nr. 3, 7. Februar 2019, ISSN 1726-4170, S. 751–753, doi:10.5194/bg-16-751-2019 (copernicus.org [abgerufen am 13. September 2022]).
  3. Klaus Hasselmann: Ernst Maier-Reimer: The discovery of silence. In: https://nature.com. Nature, abgerufen am 13. September 2022 (eng).
  4. Martin Kunz: Wintersturm im Treibhaus. FOCUS Magazin Nr. 12, 13. November 2013, abgerufen am 13. September 2022 (deutsch).
  5. DMG-Mitteilungen Heft 4 2001. Abgerufen am 13. September 2022.
  6. Trauerrede von Prof. Klaus Hasselmann. Abgerufen am 13. September 2022.
  7. Kondolenzbuch für Ernst Maier-Reimer. In: MPIMet. Max-Planck-Institut Hamburg, abgerufen am 13. September 2022.
  8. In: https://oceanrep.geomar.de/id/eprint/14321/1/erdsystem_14.pdf. Abgerufen am 13. September 2022.