Benutzer:Physics22/Spinliquidbydisorder

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Mimicry of spin-liquid-by-disorder[Bearbeiten | Quelltext bearbeiten]

The general term mimicry of spin-liquid-by-disorder or appearance of spin-liquid-by-disorder in solid state physics describes the observation of a (quantum) spin liquid-like (local) state induced by disorder. Laboratory slang calls it just spin-liquid-by-disorder, however, one should keep in mind the prefix mimicry or appearance is necessary. The general description is introduced and discussed in the PhD thesis Low-Energy Spin Dynamics in geometrically frustrated 3d-Magnets and Single-Ion Spin Systems by S. A. Bräuninger[1] founded by the SFB 1143. Here, the nature of this observation may have the properity of a local effect and reflects not necessarly the global magnetic ground state. Therefore, the effect is discussed to be a spin-liquid-like state emphasizing a possible local nature. In contrast, order-by-disorder describes a long-range magnetic ordered state which is selected by disorder and assoziated with a global magnetic ground state of the crystal, e.g. Er2Ti2O7[1]. Therefore, the prefix mimicry or appearance should be used for clarity from a theoretical point of view. Experimentally, the introduction of this term and description is reasonable because of the intensive observations in treatments by selected techniquies of local probes like NMR and µSR[1]. However, theoretically, the amount of studies increases, see jammed spin liquid[2]. Such a mimicry is observed and discussed in various works such as disorder-induced spin-liquid-like behavior in kagome-lattice compounds, e.g., Tm3Sb3Zn2O14 and Tm3Sb3Mg2O14[3], Pr2Zr2O7 [4], Tb2Hf2O7[5], BaTi0.5Mn0.5O3 [6]. This list can be arbitrary extended.

References[Bearbeiten | Quelltext bearbeiten]

  1. a b c Sascha Albert Bräuninger: Low-Energy Spin Dynamics in geometrically frustrated 3d-Magnets and Single-Ion Spin Systems. 28. Februar 2020 (nbn-resolving.org [abgerufen am 1. November 2021]).
  2. Thomas Bilitewski, Mike E. Zhitomirsky, Roderich Moessner: Jammed Spin Liquid in the Bond-Disordered Kagome Antiferromagnet. In: Physical Review Letters. Band 119, Nr. 24, 15. Dezember 2017, ISSN 1079-7114, S. 247201, doi:10.1103/PhysRevLett.119.247201, PMID 29286718 (nih.gov [abgerufen am 5. Dezember 2022]).
  3. Zhen Ma, Zhao-Yang Dong, Si Wu, Yinghao Zhu, Song Bao: Disorder-induced spin-liquid-like behavior in kagome-lattice compounds. In: Physical Review B. Band 102, Nr. 22, 15. Dezember 2020, S. 224415, doi:10.1103/PhysRevB.102.224415 (aps.org [abgerufen am 27. November 2021]).
  4. J.-J. Wen, S. M. Koohpayeh, K. A. Ross, B. A. Trump, T. M. McQueen, K. Kimura, S. Nakatsuji, Y. Qiu, D. M. Pajerowski, J. R. D. Copley, C. L. Broholm: Disordered Route to the Coulomb Quantum Spin Liquid: Random Transverse Fields on Spin Ice in Pr_{2}Zr_{2}O_{7}. In: Physical Review Letters. Band 118, Nr. 10, 10. März 2017, ISSN 1079-7114, S. 107206, doi:10.1103/PhysRevLett.118.107206, PMID 28339241 (nih.gov [abgerufen am 5. Dezember 2022]).
  5. Romain Sibille, Elsa Lhotel, Monica Ciomaga Hatnean, Gøran J. Nilsen, Georg Ehlers, Antonio Cervellino, Eric Ressouche, Matthias Frontzek, Oksana Zaharko, Vladimir Pomjakushin, Uwe Stuhr, Helen C. Walker, Devashibhai T. Adroja, Hubertus Luetkens, Chris Baines, Alex Amato, Geetha Balakrishnan, Tom Fennell, Michel Kenzelmann: Coulomb spin liquid in anion-disordered pyrochlore Tb2Hf2O7. In: Nature Communications. Band 8, Nr. 1, 12. Oktober 2017, ISSN 2041-1723, S. 892, doi:10.1038/s41467-017-00905-w (nature.com [abgerufen am 5. Dezember 2022]).
  6. M. R. Cantarino, R. P. Amaral, R. S. Freitas, J. C. R. Araújo, R. Lora-Serrano, H. Luetkens, C. Baines, S. Bräuninger, V. Grinenko, R. Sarkar, H. H. Klauss, E. C. Andrade, F. A. Garcia: Dynamic magnetism in the disordered hexagonal double perovskite ${\mathrm{BaTi}}_{1/2}{\mathrm{Mn}}_{1/2}{\mathrm{O}}_{3}$. In: Physical Review B. Band 99, Nr. 5, 15. Februar 2019, S. 054412, doi:10.1103/PhysRevB.99.054412 (aps.org [abgerufen am 5. Dezember 2022]).

[[Kategorie:Physik]] [[Kategorie:Festkörperphysik]]