Goldmanit

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Goldmanit
Dunkelgrüne, 4 mm große Goldmanit-Kristallgruppe aus Rybníček, Okres Pezinok, Region Bratislava, Slowakei
Allgemeines und Klassifikation
IMA-Nummer

1963-003[1]

IMA-Symbol

Glm[2]

Chemische Formel Ca3V3+2Si3O12
Mineralklasse
(und ggf. Abteilung)
Silikate und Germanate
System-Nummer nach
Strunz (8. Aufl.)
Lapis-Systematik
(nach Strunz und Weiß)
Strunz (9. Aufl.)
Dana

8/A.08-140
VIII/A.08-140

9.AD.25
51.4.3b.4
Ähnliche Minerale Uwarowit, Momoiit
Kristallographische Daten
Kristallsystem kubisch
Kristallklasse; Symbol hexakisoktaedrisch; 4/m32/m
Raumgruppe Ia3d (Nr. 230)Vorlage:Raumgruppe/230
Gitterparameter a = 12,011 (natürlich)[3],
synthetisch: 12,070 Å[5][6]
Formeleinheiten Z = 8[5][6]
Häufige Kristallflächen Rhombendodekaeder {110}[3], Trisoktaeder {221}[4]
Physikalische Eigenschaften
Mohshärte Bitte ergänzen!
Dichte (g/cm3) natürlicher Mischkristall: gemessen: 3,74; berechnet: 3,737[3]synthetisch: 3,765[5]
Spaltbarkeit nicht beobachtet
Farbe dunkelgrün - bräunlich grün[3][5][6]
Strichfarbe Bitte ergänzen!
Transparenz Bitte ergänzen!
Glanz Diamantglanz
Kristalloptik
Brechungsindex n 1,821 (natürlicher Mischkristall)[3];
1,834 (synthetisch)[5]
Doppelbrechung δ = schwach anormal doppelbrechend

Das Mineral Goldmanit ist ein seltenes Inselsilikat aus der Granatgruppe und hat die idealisierte chemische Zusammensetzung Ca3V3+2Si3O12. Es kristallisiert im kubischen Kristallsystem mit der Struktur von Granat.[3][5]

Goldmanit bildet grüne bis bräunlich grüne rhombendodekaedrische oder rundliche Kristalle mit Diamantglanz, die selten größer als 1–2 mm werden. Die Kristalle sind häufig optisch schwach doppelbrechend und können Sektorzonierung aufweisen.

Gebildet werden goldmanitreiche Granate bei der Kontaktmetamorphose von vanadium- und calciumhaltigen Sedimenten. Die Typlokalität ist die Sandy Mine nahe Laguna im Cibola County, New Mexico, USA.[3]

Etymologie und Geschichte[Bearbeiten | Quelltext bearbeiten]

Geringe Vanadiumgehalte in Calciumgranaten sind seit Beginn des 20. Jahrhunderts bekannt und Doelter gibt bereits 1917 in seinem Handbuch der Mineralchemie die Zusammensetzung des Vanadium-Endglieds mit Ca3V3+2Si3O12 an.[7]

Die ersten Granate, deren Zusammensetzung von diesem Endglied dominiert werden, wurden 1962 von Robert H. Moench in der kontaktmetamorph überprägten Uran-Vanadium-Lagerstätte im Gebiet der Sandy Mine in Laguna, New Mexico gefunden und 1964 von Moench und Meyrowitz vom United States Geological Survey als neues Mineral der Granatgruppe beschrieben. Sie wählten den Namen Goldnamnit zu ehren des langjährigen Sedimentologen des United States Geological Survey, Marcus I. Goldman. Er untersuchte zu Beginn der 1940er Jahre das Gebiet der Uranlagerstätte und beschrieb den Entrada Sandstein, in dem der Vanadiumgranat entdeckt wurde.[3]

Im Jahr nach der Erstbeschreibung von Goldmanit gelang B. V. Mill aus der Sowjetunion[8], R. G. J. Strens von der Universität von Kalifornien in Berkeley (USA)[5] und Jun Ito von der Universität Tokio (Japan)[6] die Synthese von reinem Goldmanit.

Bekannt wurden vanadiumhaltige Grossulare aus Ostafrika in den 1970er Jahren, als sie von Tiffany & Co. in New York unter dem Namen Tsavorit als Edelsteinrarität vermarktet wurden.[9]

Klassifikation[Bearbeiten | Quelltext bearbeiten]

Die strukturelle Klassifikation der International Mineralogical Association (IMA) zählt den Goldmanit zur Granat-Obergruppe, wo er zusammen mit Almandin, Andradit, Calderit, Eringait, Grossular, Knorringit, Morimotoit, Majorit, Menzerit-(Y), Momoiit, Pyrop, Rubinit, Spessartin und Uwarowit die Granatgruppe mit 12 positiven Ladungen auf der tetraedrisch koordinierten Gitterposition bildet.[10]

Die veraltete, aber noch gebräuchliche 8. Auflage der Mineralsystematik nach Strunz führt den Goldmanit zusammen mit Almandin, Andradit, Calderit, Grossular, Henritermierit, Hibschit, Holtstamit, Hydrougrandit, Katoit, Knorringit, Morimotoit, Majorit, Pyrop, Schorlomit, Spessartin, Uwarowit, Wadalit und Yamatoit (diskreditiert, da identisch mit Momoiit) in der „Granatgruppe“ mit der System-Nr. VIII/A.08 innerhalb der Abteilung der „Inselsilikate (Nesosilikate)“ auf.

Auch die seit 2001 gültige 9. Auflage der Strunz’schen Mineralsystematik zählt den Goldmanit zur „Granatgruppe“ mit der System-Nr. 9.AD.25 innerhalb der Abteilung der „Inselsilikate (Nesosilikate)“. Diese ist jedoch weiter unterteilt nach der möglichen Anwesenheit weiterer Anionen und der Koordination der beteiligten Kationen, so dass das Mineral entsprechend seiner Zusammensetzung in der Unterabteilung „Inselsilikate ohne zusätzliche Anionen; Kationen in oktaedrischer [6]er- und gewöhnlich größerer Koordination“ zu finden ist.

Die vorwiegend im englischen Sprachraum gebräuchliche Systematik der Minerale nach Dana ordnet den Goldmanit ebenfalls in die Abteilung der „Inselsilikatminerale“ ein. Hier ist er zusammen mit Andradit, Grossular, Momoiit (veraltet: Yamatoit) und Uwarowit in der „Granatgruppe (Ugrandit-Reihe)“ mit der System-Nr. 51.04.03b innerhalb der Unterabteilung „Inselsilikate: SiO4-Gruppen nur mit Kationen in [6] und >[6]-Koordination“ zu finden.

Chemismus[Bearbeiten | Quelltext bearbeiten]

Goldmanit mit der idealisierten Zusammensetzung [X]Ca3[Y]V3+[Z]Si3O12 ist das Vanadium-Analog von Grossular ([X]Ca3[Y]Al[Z]Si3O12) bzw. Andradit ([X]Ca3[Y]Fe3+[Z]Si3O12) mit denen es Mischkristalle bildet entsprechend den Austauschreaktionen

  • [Y]V3+ = [Y]Al3+, (Grossular)
  • [Y]V3+ = [Y]Fe3+ (Andradit).

In metamorphen Manganlagerstätten in Japan sind Goldmanit-Momoiit-Mischkristalle gefunden worden. In diesen Mischkristallen wird Mangan wird über die Austauschreaktion

  • [X]Ca2+ = [X]Mn2+

in Goldmanit eingebaut.[11][12]

Für den Goldmanit aus der Typlokalität wird folgende Zusammensetzung angegeben:

  • [X](Ca2,91Mn0,02Mg0,08)[Y](V3+1,20Al0,47Fe3+0,33)[Z]Si2,99O12,[3]

wobei mit [X], [Y] und [Z] die Positionen in der Granatstruktur angegeben sind.

In vielen Goldmaniten ist ein Teil des Vanadiums durch Chrom (Cr3+) ersetzt, entsprechend einer Mischkristallbildung mit Uwarowit. Der Anteil der Uwarowit-Komponente in Goldmanit-Mischkristallen übersteigt selten 25 mol-%.[13][4]

Bei fast allen Untersuchungen von Goldmanit wurde angenommen, dass Vanadium vollständig als dreiwertiges Vanadium vorliegt. Die Untersuchung der Oxidationsstufe von Vanadium in einen natürlichen Goldmanit mit Röntgen-Nahkanten-Absorptions-Spektroskopie ergab eine mittlere Valenz von 2,56 - 2,62. Demnach ist in Goldmanit, der meist unter reduzierenden Bedingungen bei Anwesenheit von Kohlenstoff gebildet wird, 10-40 % des Vanadiums zweiwertig (V2+).[14]

Kristallstruktur[Bearbeiten | Quelltext bearbeiten]

Goldmanit kristallisiert mit kubischer Symmetrie in der Raumgruppe Ia3d (Raumgruppen-Nr. 230)Vorlage:Raumgruppe/230 mit 8 Formeleinheiten pro Elementarzelle. Der natürliche Mischkristall aus der Typlokalität hat dem Gitterparameter a = 12,011 Å.[3] Für synthetischen Goldmanit wurde a = 12,09 Å,[8] a = 12,070 Å[5] bzw. 12,06 Å[6] gemessen.

Natürlicher Goldmanit ist ebenso wie Grossular häufig optisch doppelbrechend, was auf eine niedrigere Symmetrie hinweist. Uher und Mitarbeiter geben für sektorzonierten, anisotropen Goldmanit trikline Symmetrie in der Raumgruppe I1 (Raumgruppen-Nr. 2, Stellung 4)[15]Vorlage:Raumgruppe/2.4 an. Die triklinen Gitterparameter a=12,003 Å, b=11,991 Å, c=12,009 Å, =90,12°, ß=90,04°, j=90,04° weichen jedoch nur gering von der idealen, kubischen Symmetrie ab. Als Ursache für die Symmetrieerniedrigung geben sie Ordnung der Kationen auf den 8 verschiedenen Oktaederpositionen der triklinen Struktur an.[4]

Die Struktur ist die von Granat. Magnesium (Ca2+) besetzt die dodekaedrisch von 8 Sauerstoffionen umgebenen X-Positionen, Vanadium (V3+) die oktaedrisch von 6 Sauerstoffionen umgebene Y-Position und die tetraedrisch von 4 Sauerstoffionen umgebenen Z-Position ist ausschließlich mit Silicium (Si4+) besetzt.[3][5][6][4]

Bildung und Fundorte[Bearbeiten | Quelltext bearbeiten]

Unter sauerstoffarmen Bedingungen bilden einige Schwermetalle, z. B. Uran, Vanadium, Kupfer, Zink, Komplexe mit Kohlenstoff. Dies kann zu starker Anreicherung dieser Metalle in kohlenstoffreichen Sedimenten führen, die unter diesen Bedingungen gebildet werden, z. B. Schwarzschiefern. Werden solche karbonathaltigen Sedimente z. B. durch Kontaktmetamorphose erhitzt, bildet sich bei ~500° C Goldmanit.

Weltweit gibt es nur wenige dokumentierte Fundorte von Goldmanit.[16]

In der Typlokalität, der Sandy Mine bei Laguna in New Mexico, tritt Goldmannit in dünnen Lagen dunkler Sandsteine auf, die von Diabasgängen durchzogen und von diesen kontaktmetamorph verändert worden sind. Begleitminerale sind Quarz mit vanadiumhaltigem Glimmer (vermutlich Roscoelith), Montmorillonit und Calcit als Zementphasen.[3]

Der bislang reinste Goldmanit (96, mol-%) wurde im Zuge der Erdölprospektion in der Nordsee aus einem Sandstein aus einem Bohrkern aus 1902 m Tiefe geborgen. Dieses winzige Körnchen Goldmanit ist detritischen Ursprungs, also nicht in dem Sandstein gewachsen und über seine Bildungsbedingungen ist nichts bekannt.[17]

Vergleichbar reiner Goldmanit mit bis zu 91 mol-% wurde in den metamorph überprägten Schwarzschiefern aus dem Deokpyeong Gebiet im Ogcheon Gürtel in Korea gefunden. Die bis zu 1,7 mm großen, rundlichen Klistalle sind grün und leicht doppelbrechend. Sie treten in einer Matrix aus Graphit, Klinochlor, Pyrit, Tremolit, Celsian und Quarz zusammen mit kleinen Mengen Baryt, Uranocircit, Uraninit, Phlogopit, Apatit, Titanit und Talk auf.[18]

Im Pezinok-Pernek Kristallinkomplex bei Pezinok im Okres Pezinok in der Bratislavský kraj, Slowakei tritt Goldmanit ebenfalls in metamorphen Schwarzschiefern auf. Die sehr feinkörnige Grundmasse der Schwarzschiefer besteht aus Albit, Quarz, Amphibol, Phlogopit, Muskovit, Chlorit, Pumpellyit, Titanit, Pyrit und organischen Kohlenstoff, der zu Metaanthrazit bis Semigraphit umgewandelt worden ist. Darin finden sich bis zu 5 mm große, hellgrüne Granate mit Zusammensetzungen zwischen Goldmanit, Uwarowit und Grossular. Der Goldmanit-Anteil reicht von 16 bis 73 %.[13][4]

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

Commons: Goldmanit – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Malcolm Back, Cristian Biagioni, William D. Birch, Michel Blondieau, Hans-Peter Boja und andere: The New IMA List of Minerals – A Work in Progress – Updated: January 2023. (PDF; 3,7 MB) In: cnmnc.main.jp. IMA/CNMNC, Marco Pasero, Januar 2023, abgerufen am 26. Januar 2023 (englisch).
  2. Laurence N. Warr: IMA–CNMNC approved mineral symbols. In: Mineralogical Magazine. Band 85, 2021, S. 291–320, doi:10.1180/mgm.2021.43 (englisch, cambridge.org [PDF; 320 kB; abgerufen am 5. Januar 2023]).
  3. a b c d e f g h i j k l Robert H. Moench and Robert Meyrowitz: Goldmanite, a vanadium garnet from Laguna, New Mexico. In: American Mineralogiste. Band 49, 1964, S. 644–655 (rruff.info [PDF; 550 kB; abgerufen am 17. Februar 2018]).
  4. a b c d e Pavel Uher, Martin Kováčik, Michal Kubiš, Alexander Shtukenberg, and Daniel Ozdín: Metamorphic vanadian-chromian silicate mineralization in carbon-rich amphibole schists from the Malé Karpaty Mountains, Western Carpathians, Slovakia. In: American Mineralogiste. Band 93, Nr. 1, 2008, S. 63–73 (rruff.info [PDF; 2,1 MB; abgerufen am 17. Februar 2018]).
  5. a b c d e f g h R. G. J. Strens: Synthesis and properties of calcium vanadium garnet (goldmanite). In: American Mineralogiste. Band 50, 1965, S. 260 (minsocam.org [PDF; 64 kB; abgerufen am 17. Februar 2018]).
  6. a b c d e Jun Ito: Synthesis of Vanadium Silicates: Haradaite, Goldmanite and Roscoelite. In: Mineralogical Journal. Band 4, Nr. 4, 1965, S. 299–316 (jst.go.jp [PDF; 2,0 MB; abgerufen am 17. Februar 2018]).
  7. C. Doelter, P. Jannasch, G. d’Achiardi: Granatgruppe. In: Handbuch der Mineralchemie. Band 2, 1917, S. 878–1076, doi:10.1007/978-3-642-49877-0_25.
  8. a b B. V. Mill': Hydrothermal Synthesis of Garnets Containing V3+, In3+ and Sc3+. In: Soviet Physics Doklady. Band 9, 1964, S. 414.
  9. Vincent Pardieu and Richard W. Hughes: Tsavorite - the untamed beauty. In: Geology. 2008, S. 36–45 (researchgate.net [PDF; 675 kB; abgerufen am 18. Februar 2018]).
  10. Edward S. Grew, Andrew J. Locock, Stuart J. Mills, Irina O. Galuskina, Evgeny V. Galuskin and Ulf Hålenius: IMA Report - Nomenclature of the garnet supergroup. In: American Mineralogist. Band 98, 2013, S. 785–811 (main.jp [PDF; 2,3 MB; abgerufen am 8. Juli 2017]).
  11. Michael Fleischer: New Mineral Names: Yamatoite. In: The Amaerican Mineralogiste. Band 50, 1965, S. 810 (minsocam.org [PDF; 711 kB; abgerufen am 25. Februar 2018]).
  12. H. Tanaka, S. Endo, T. Minakawa, M.Enami, D. Nishio-Hamane, H. Miura and A. Hagiwara: Momoiite, (Mn2+,Ca)3(V3+,Al)2Si3O12, a new manganese vanadium garnet from Japan. In: Journal of Mineralogical and Petrological Sciences. Band 105, 2010, S. 92–96 (jst.go.jp [PDF; 729 kB; abgerufen am 25. Februar 2018]).
  13. a b Pavel Uher, Martin Chovan, and Juraj Majzlan: anadian-chromian garnet in mafic pyroclastic rocks of the Malé Karpaty Mts., Western Carpathians, Slovakia. In: Canadian Mineralogiste. Band 32, 1994, S. 319–326 (researchgate.net [PDF; 852 kB; abgerufen am 17. Februar 2018]).
  14. K. Righter, S. Sutton, L. Danielson, K. Pando, G. Schmidt, H. Yang, S. Berthet, M. Newville, Y. Choi, R.T. Downs, and V. Malavergne: The effect of fO2 on the partitioning and valence of V and Cr in garnet/melt pairs and the relation to terrestrial mantle V and Cr content. In: American Mineralogiste. Band 96, 2011, S. 1278–1290 (rruff.info [PDF; 675 kB; abgerufen am 18. Februar 2018]).
  15. Die Nummerierung dieser Achsenstellung entspricht nicht der Reihenfolge der International Tables for Crystallography, da diese dort nicht aufgeführt wird.
  16. Fundortliste für Goldmanit beim Mineralienatlas und bei Mindat
  17. Claire R. Hallsworth, Alec Livingstone and Andrew C. Morton: Detrital goldmanite from the Palaeocene of the North Sea. In: Mineralogical Magazine. Band 56, 1992, S. 117–120 (minersoc.org [PDF; 318 kB; abgerufen am 20. Februar 2018]).
  18. G. Y. Jeong and Y. H. Kim: Goldmanite from the black slates of the Ogcheon belt, Korea. In: Mineralogical Magazine. Band 63, Nr. 2, 1999, S. 253–256 (rruff.info [PDF; 204 kB; abgerufen am 17. Februar 2018]).