Benzylprimverosid

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Strukturformel
Strukturformel von Benzylprimverosid
Allgemeines
Name Benzylprimverosid
Andere Namen

Benzyl-6-O-β-D-xylopyranosyl-β-D-glucopyranosid (IUPAC)

Summenformel C18H26O10
Externe Identifikatoren/Datenbanken
CAS-Nummer 130622-31-0
PubChem 131248
ChemSpider 116025
Wikidata Q83024763
Eigenschaften
Molare Masse 402,15 g·mol−1
Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung
keine Einstufung verfügbar[1]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Benzylprimverosid ist ein Glycosid der β-D-Primverose mit Benzylalkohol als Aglycon.

Vorkommen[Bearbeiten | Quelltext bearbeiten]

Benzylalkohol ist ein wichtiger Geschmacksstoff von Tee und liegt in der Pflanze in Form von Glycosiden, insbesondere als Benzylprimverosid, vor.[2][3][4][5]

Benzylprimverosid kommt daneben auch in verschiedenen Früchten vor, darunter Pomelo[6], Pflaume[7], Japanische Aprikose (Prunus mume)[8], Sauerkirsche[9], sowie grüne Früchte des Kirschlorbeers.[10] Verschiedene Arten der Gattung Alangium aus der Familie der Hartriegelgewächse, darunter Alangium platanifolium[11], Alangium premnifolium[12] und Alangium chinense[13], enthalten ebenfalls Benzylprimverosid.

Andere Pflanzen, die die Verbindung enthalten, sind der Meerrettichbaum (Moringa oleifera)[14], das Kleine Löwenmaul (Linaria vulgaris)[15], das Kürbisgewächs Gynostemma laxum[16], das Hundsgiftgewächs Apocynum venetum[17], sowie der Arabische Jasmin (Jasminum sambac).[18]

Biosynthese[Bearbeiten | Quelltext bearbeiten]

Die Biosynthese in Teepflanzen wurde untersucht. Dabei findet eine zweistufige Glycosylierung statt, zuerst mit Glucose, dann mit Xylose. Eine Glycosyltranferase bildet Glucoside von verschiedenen Alkoholen (neben Benzylalkohol auch 2-Phenylethanol, Geraniol und Linalool). Eine zweite kann dann spezifisch diese Glucoside durch Übertragung von Xylose in Primveroside überführen.[4]

Synthese[Bearbeiten | Quelltext bearbeiten]

Mittels Umglycosylierung des Primverosids von p-Nitrophenol mittels Penicillium multicolor können diverse andere Primveroside, darunter auch Benzylprimverosid im Millimol-Maßstab hergestellt werden.[19]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Dieser Stoff wurde in Bezug auf seine Gefährlichkeit entweder noch nicht eingestuft oder eine verlässliche und zitierfähige Quelle hierzu wurde noch nicht gefunden.
  2. Wenfei Guo, Ryuji Hosoi, Kanzo Sakata, Naoharu Watanabe, Akihito Yagi, Kazuo Ina, Shaojun Luo: ( S )-Linalyl, 2-Phenylethyl, and Benzyl Disaccharide Glycosides Isolated as Aroma Precursors from Oolong Tea Leaves. In: Bioscience, Biotechnology, and Biochemistry. Band 58, Nr. 8, Januar 1994, S. 1532–1534, doi:10.1271/bbb.58.1532.
  3. Dongmei Wang, Takako Yoshimura, Kikue Kubota, Akio Kobayashi: Analysis of Glycosidically Bound Aroma Precursors in Tea Leaves. 1. Qualitative and Quantitative Analyses of Glycosides with Aglycons as Aroma Compounds. In: Journal of Agricultural and Food Chemistry. Band 48, Nr. 11, 1. November 2000, S. 5411–5418, doi:10.1021/jf000443m.
  4. a b Shoji Ohgami, Eiichiro Ono, Manabu Horikawa et al.: Volatile Glycosylation in Tea Plants: Sequential Glycosylations for the Biosynthesis of Aroma β -Primeverosides Are Catalyzed by Two Camellia sinensis Glycosyltransferases. In: Plant Physiology. Band 168, Nr. 2, Juni 2015, S. 464–477, doi:10.1104/pp.15.00403, PMID 25922059, PMC 4453793 (freier Volltext).
  5. Mariko Nishikitani, Dongmei Wang, Kikue Kubota, Akio Kobayashi, Fumio Sugawara: ( Z )-3-Hexenyl and trans -Linalool 3,7-oxide β-Primeverosides Isolated as Aroma Precursors from Leaves of a Green Tea Cultivar. In: Bioscience, Biotechnology, and Biochemistry. Band 63, Nr. 9, Januar 1999, S. 1631–1633, doi:10.1271/bbb.63.1631.
  6. Desen Su, Yunyun Zheng, Ziqiang Chen, Yuwu Chi: Simultaneous determination of six glycosidic aroma precursors in pomelo by ultra-high performance liquid chromatography-tandem mass spectrometry. In: The Analyst. Band 146, Nr. 5, 2021, S. 1698–1704, doi:10.1039/D0AN01705A.
  7. Shin-ichi Kayano, Hiroe Kikuzaki, Takao Ikami, Tomoo Suzuki, Takahiko Mitani, Nobuji Nakatani: A New Bipyrrole and Some Phenolic Constituents in Prunes ( Prunus domestica L.) and Their Oxygen Radical Absorbance Capacity (ORAC). In: Bioscience, Biotechnology, and Biochemistry. Band 68, Nr. 4, Januar 2004, S. 942–944, doi:10.1271/bbb.68.942.
  8. Hisashi Matsuda, Toshio Morikawa, Tomoko Ishiwada et al.: Medicinal Flowers. VIII. Radical Scavenging Constituents from the Flowers of Prunus mume: Structure of Prunose III. In: Chemical and Pharmaceutical Bulletin. Band 51, Nr. 4, 2003, S. 440–443, doi:10.1248/cpb.51.440.
  9. Wilfried Schwab, Gerhard Scheller, Peter Schreier: Glycosidically bound aroma components from sour cherry. In: Phytochemistry. Band 29, Nr. 2, 1990, S. 607–612, doi:10.1016/0031-9422(90)85126-Z.
  10. Klaus Weinges, Hartmut Schick, Michael Lautenschläger, Gerhard Schilling: Isolierung und NMR-spektroskopische Untersuchungen von (−)-1-O-Benzyl-β-D-primverosid aus grünen Früchten vonPrunus laurocerasus. In: Liebigs Annalen der Chemie. Band 1991, Nr. 7, 12. Juli 1991, S. 703–705, doi:10.1002/jlac.1991199101124.
  11. Hideaki Otsuka, Yasuyuki Takeda, Kazuo Yamasaki: Xyloglucosides of benzyl and phenethyl alcohols and Z-hex-3-en-1-ol from leaves of Alangium platanifolium var. trilobum. In: Phytochemistry. Band 29, Nr. 11, Januar 1990, S. 3681–3683, doi:10.1016/0031-9422(90)85306-Z.
  12. Hidehiko Kijima, Toshinori Ide, Hideaki Otsuka, Choei Ogimi, Eiji Hirata, Anki Takushi, Yoshio Takeda: Water-soluble phenolic glycosides from leaves of Alangium premnifolium. In: Phytochemistry. Band 44, Nr. 8, April 1997, S. 1551–1557, doi:10.1016/S0031-9422(96)00760-1.
  13. Atsuko Itoh, Takao Tanahashi, Naotaka Nagakura, Kenichiro Inoue, Hiroshi Kuwajima, Hua-Xin Wu: Glycosides of Benzyl and Salicyl Alcohols from Alangium chinense. In: Chemical and Pharmaceutical Bulletin. Band 49, Nr. 10, 2001, S. 1343–1345, doi:10.1248/cpb.49.1343.
  14. Poolsak Sahakitpichan, Chulabhorn Mahidol, Wannaporn Disadee, Somsak Ruchirawat, Tripetch Kanchanapoom: Unusual glycosides of pyrrole alkaloid and 4′-hydroxyphenylethanamide from leaves of Moringa oleifera. In: Phytochemistry. Band 72, Nr. 8, Juni 2011, S. 791–795, doi:10.1016/j.phytochem.2011.02.021.
  15. Huiming Hua, Maosheng Cheng, Xian Li, Yuehu Pei: A New Pyrroloquinazoline Alkaloid from Linaria vulgaris. In: Chemical and Pharmaceutical Bulletin. Band 50, Nr. 10, 2002, S. 1393–1394, doi:10.1248/cpb.50.1393.
  16. Thanh Ky Pham, Tuan Anh Pham, Van Kiem Phan et al.: Benzyl Glycosides from the Aerial Parts of Gynostemma laxum and Their NF-κB Inhibitory Activity in HepG2 Cells. In: Bulletin of the Korean Chemical Society. Band 32, Nr. 10, 20. Oktober 2011, S. 3763–3766, doi:10.5012/bkcs.2011.32.10.3763.
  17. Toshiyuki Murakami, Akinobu Kishi, Hisashi Matsuda, Masao Hattori, Masayuki Yoshikawa: Medicinal Foodstuffs. XXIV. Chemical Constituents of the Processed Leaves of Apocynum venetum L.: Absolute Stereostructures of Apocynosides I and II. In: Chemical and Pharmaceutical Bulletin. Band 49, Nr. 7, 2001, S. 845–848, doi:10.1248/cpb.49.845.
  18. Junji Inagaki, Naoharu Watanabe, Jae-Hak Moon et aL.: Glycosidic Aroma Precursors of 2–Phenylethyl and Benzyl Alcohols from Jasminum sambac Flowers. In: Bioscience, Biotechnology, and Biochemistry. Band 59, Nr. 4, Januar 1995, S. 738–739, doi:10.1271/bbb.59.738.
  19. Kazutaka Tsuruhami, Shigeharu Mori, Kanzo Sakata, Satoshi Amarume, Shigetaka Saruwatari, Takeomi Murata, Taichi Usui: Efficient Synthesis of β‐Primeverosides as Aroma Precursors by Transglycosylation of β‐Diglycosidase from Penicillium multicolor. In: Journal of Carbohydrate Chemistry. Band 24, Nr. 8-9, 1. November 2005, S. 849–863, doi:10.1080/07328300500439413.