Kubische Gleichung

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Graph einer Funktion 3. Grades; die Nullstellen (y = 0) sind dort, wo der Graph die x-Achse schneidet. Dieser Graph hat drei reelle Nullstellen.

Kubische Gleichungen sind Polynomgleichungen dritten Grades, also algebraische Gleichungen der Form

wobei die als Koeffizienten bezeichnet werden, Elemente eines Ringes sind und ist. Bei den wichtigsten Anwendungen ist der Körper der reellen oder komplexen Zahlen. Im letzteren Fall hat die kubische Gleichung nach dem Fundamentalsatz der Algebra stets drei komplexe Lösungen , die auch zusammenfallen können. Mit ihrer Hilfe lässt sich das Polynom in faktorisierter Form darstellen:

.

Im Falle reeller Koeffizienten stellt die Menge der Paare geometrisch eine kubische Parabel in der --Ebene dar, also den Graph einer kubischen Funktion. Dessen Nullstellen, also seine Schnittpunkte mit der -Achse, sind die reellen Lösungen der kubischen Gleichung. Der Funktionsgraph hat nach dem Zwischenwertsatz stets mindestens eine reelle Nullstelle, jedoch höchstens drei.

Lösungsansätze[Bearbeiten | Quelltext bearbeiten]

Raten einer Lösung[Bearbeiten | Quelltext bearbeiten]

Verfahren[Bearbeiten | Quelltext bearbeiten]

Kennt man eine Lösung , so kann man das kubische Polynom mit Hilfe der Polynomdivision oder des Horner-Schemas durch dividieren und erhält so ein quadratisches Polynom. Die mit diesem Polynom gebildete quadratische Gleichung kann man mit Hilfe einer Lösungsformel lösen und erhält so die restlichen Lösungen der kubischen Gleichung. Dieses Verfahren ist aber nur für eine rationale Lösung praktikabel. Bereits bei der irreduziblen Gleichung ist das Verfahren mit der noch relativ einfachen Lösung nicht mehr praktikabel, da die Koeffizienten der verbleibenden quadratischen Gleichung sehr kompliziert werden. In diesen Fällen lassen sich die Lösungen mit der unten genannten Cardanischen Formel leichter bestimmen.

Sind alle Koeffizienten der kubischen Gleichung ganzzahlig, so kann man versuchen, eine rationale Lösung zu raten, das heißt, durch Probieren zu finden. Ist der führende Koeffizient vom Betrag gleich 1, so kann man die ganzzahligen Teiler des letzten Koeffizienten durchprobieren (auch negative Werte!). Ist von eins verschieden, so müssen alle Brüche, deren Zähler ein Teiler von und deren Nenner ein Teiler von ist, durchprobiert werden. Der Satz über rationale Nullstellen garantiert, dass man mit diesem endlichen Aufwand eine rationale Nullstelle findet, falls eine solche existiert. Sind die Koeffizienten rational, so kann man ganzzahlige Koeffizienten erreichen, indem man die Gleichung mit dem Hauptnenner aller Koeffizienten multipliziert.

Beispiel[Bearbeiten | Quelltext bearbeiten]

Als rationale Lösungen der kubischen Gleichung

kommen nur die ganzzahligen Teiler des letzten Koeffizienten sowie in Frage. In der Tat ist eine Lösung, wovon man sich durch Einsetzen überzeugt. Polynomdivision liefert

und mit der quadratischen Lösungsformel ergeben sich als weitere Lösungen .

Algebraische Bestimmung[Bearbeiten | Quelltext bearbeiten]

Im Folgenden wird angenommen, dass der Koeffizientenring wenigstens ein Integritätsbereich ist, zu dem ein Quotientenkörper gebildet werden kann. In den besonders wichtigen Fällen ist der angeordnete Körper der reellen Zahlen mit der Ordnungsrelation .

Charakteristik 2 und 3[Bearbeiten | Quelltext bearbeiten]

Hat der Koeffizientenring die Charakteristik oder dann lassen sich die nachfolgenden Formeln, insbesondere die Cardanische, wegen der Divisionen durch nicht anwenden – im Fall lässt sich die Gleichung nicht einmal auf die reduzierte Form bringen.

Ein wichtiges Hilfsmittel zur Untersuchung der Nullstellen ist die formale Ableitung , die, wenn sie nicht konstant ist, eine einzige Wurzel hat, denn sie ist im Fall linear und im Fall vom Grad 2 mit einer zweifachen Nullstelle. Durch Bilden des größten gemeinsamen Teilers kann festgestellt werden, ob mehrfache Nullstellen hat.

Reduktion der Gleichung auf eine Normalform[Bearbeiten | Quelltext bearbeiten]

Es gibt eine Reihe äquivalenter Umformungen der kubischen Gleichung durch Lineartransformation des Arguments, die es erlauben, diese für das nachfolgende Lösungsverfahren zu vereinfachen (Tschirnhaus-Transformation). Durch Division durch kann das Polynom zunächst normiert werden.

Durch Lineartransformation des Arguments mit Hilfe der Substitution ergibt sich folgender Term:

Ist die Charakteristik des Koeffizientenrings von 3 verschieden, dann lässt sich das quadratische Glied durch die Wahl von beseitigen und man erhält die reduzierte Form der kubischen Gleichung:

Die reduzierte Form mit kann nun mit Hilfe der Cardanischen Formeln aufgelöst und durch anschließende Rücksubstitution können die Lösungen der ursprünglichen Gleichung bestimmt werden. Hierdurch ist die Gesamtheit der reellen und komplexen Lösungen zugänglich.

Analytische Bestimmung der reellen Lösungen der reellen Gleichung[Bearbeiten | Quelltext bearbeiten]

Im Fall, dass das ursprüngliche Polynom nur reelle Koeffizienten hat, kann mithilfe der Diskriminante überprüft werden, ob ausschließlich reelle Lösungen vorliegen:

Ist , so sind alle Lösungen reell. Andernfalls gibt es genau eine reelle Lösung, die andern beiden sind komplex nicht-reell und konjugiert zueinander.

Der Fall p = 0[Bearbeiten | Quelltext bearbeiten]

Fall 1:  

Hier wählt man und erhält . Nach Rücksubstitution ergibt sich eine einzige reelle Lösung zu .

Unterfall 1a:   und

Die einzige reelle Lösung und hat die Vielfachheit 3.
Die Fälle mit p ≠ 0[Bearbeiten | Quelltext bearbeiten]

Eine Lösungsstrategie für die verbleibenden Lösungen, die ohne die Verwendung komplexer Zahlen auskommt, ist die folgende:
Die reduzierte Form wird durch Substitution mit Hilfe einer geeigneten trigonometrischen oder hyperbolischen Funktion so umgeformt, dass sie auf bekannte Additionstheoreme zurückgeführt werden kann.

Geeignete Funktionen sind:

Funktion Wertebereich Additionstheorem kubische Gleichung Fall
2
3
3
beliebig reell 4

Die aufgeführten Additionstheoreme sind so parametrisiert, dass sie sich in dieselbe kubische Gleichung überführen lassen, die sich mit der reduzierten Form der gegebenen Gleichung

zur Deckung bringen lässt. Mithilfe der Setzung erhält man durch Koeffizientenvergleich sofort

    und     .

Somit lässt sich durch die ursprünglichen Koeffizienten und ausdrücken:

,

wobei gesetzt ist und eine zugehörige Arkus- oder Areafunktion bezeichnet. Durch Rücksubstitution kann dann die endgültige Lösung der kubischen Gleichung ermittelt werden. Aus , und erhält man somit

.

Als erstes bestimmt das Vorzeichen von die Wahl der Substitutionsfunktion , in zweiter Linie , das im reellen Wertebereich von liegen muss.

Fall 2:     (woraus     und     folgt):

Substitution mit , entspricht
Es ergeben sich drei mögliche Lösungen zu
mit und

Unterfall 2a:     (woraus     folgt):

Es gibt nur zwei Lösungen. Die reduzierte Form vereinfacht sich zu . Aus den Linearfaktoren lassen sich nun direkt die zwei Lösungen und ablesen. Zum selben Ergebnis führt , also bzw. . Entsprechend ist und . Die letztere Lösung hat die Vielfachheit 2.

Fall 3:     und     (woraus     und     folgt):

Substitution mit , entspricht , also
Zunächst hat man zwei Lösungen , die wegen wieder in eins geworfen werden. Also: mit .

Grenzfall 3a:     und     (woraus     folgt):

, also und .
Bemerkung:
Die zwei anderen (rein-imaginären) Lösungen von werden durch die Anwendung von ins Reelle zurückgeworfen: . Das Ergebnis ist wie im Unterfall 2a: und .

Fall 4:     und   :

Substitution mit , entspricht
Als Ergebnis folgt:
mit
Es ergibt sich eine reelle Lösung.

Lösungsformel[Bearbeiten | Quelltext bearbeiten]

Eine Lösungsformel über die Zerlegung ist:

Nach den Setzungen
  und
  ist



    und  berechnet sich dann nach der Formel:


Für  ist zu wählen:  und  ( positiv).

Beispiel 1: Für ergibt sich:

, ,  , 



Beispiel 2: Für ergibt sich:

, ,  , 



Beispiel 3: Für ergibt sich:

, ,  , 



Beispiel 4: Für ergibt sich:

, ,  , 



Schnelle numerische Berechnung[Bearbeiten | Quelltext bearbeiten]

Die Methode von Deiters und Macías-Salinas[1] bringt die kubische Funktion zunächst einmal in die Form und verwendet dann die Laguerre-Samuelson-Ungleichung[2], um Schranken für die Lösungen zu finden.

.

Hierbei ist , und ist der Abszissenwert des Wendepunkts. Dann sind folgende Fälle zu unterscheiden:

  1. : Dann ist die Wendestelle die erste Lösung, .
  2. : Dann ist eine Lösung.
  3. Andernfalls wird iterativ eine Näherungslösung bestimmt. Dies geschieht ausgehend vom Startwert
mit dem Halley-Verfahren:
.

Anschließend wird durch Polynomdivision die quadratische Funktion (mit kleinem , dessen Betrag von der erzielten Genauigkeit abhängt) gebildet, deren Nullstellen (im Fall ) direkt ausgerechnet werden können:

mit und .

Bei sorgfältiger Implementierung (siehe revidierte Zusatzinformationen zur Originalpublikation[3]) ist dieses Verfahren auf modernen Prozessoren (2014, Architektur x86-64) um den Faktor 1,2 bis 10 schneller als die auf vergleichbare Genauigkeit ausgewerteten Cardanischen Formeln.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

Commons: Cubic functions – Sammlung von Bildern, Videos und Audiodateien

Quellen und Literatur[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. U. K. Deiters, R. Macías-Salinas: Calculation of densities from cubic equations of state: revisited. In: Ind. Eng. Chem. Res. Band 53, 2014, S. 2529–2536, doi:10.1021/ie4038664.
  2. Paul Samuelson: How Deviant Can You Be? In: Journal of the American Statistical Association. 63. Jahrgang, Nr. 324, 1968, S. 1522–1525, doi:10.2307/2285901.
    S. a. Samuelson’s inequality in der englischen Wikipedia, zugegriffen am 2016-06-10
  3. Cubic rootfinder using Halley’s method: C/C++ program code. Abgerufen am 5. Juni 2023.